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Abstract—While it is possible to exchange tokens whose smart
contracts are on the same blockchain, cross-exchanging bitcoins
for a Bitcoin wrapped token is still cumbersome. In particular,
current methods of exchange are still custodial and perform
privacy-threatening controls on the users in order to operate.
To solve this problem we present BxTB: cross-chain exchanges
of bitcoins for any Bitcoin wrapped tokens. BxTB lets users
achieve that by bypassing the mint-and-burn paradigm of current
wrapped tokens and cross-exchanging already minted tokens in
a P2P way. Instead of relaying on HTLCs and the overhead
of communication and slowness due to time-locks, we leverage
Stateless SPVs, i.e. proof-of-inclusion of transactions in the
Bitcoin chain validated through a smart contract deployed on the
other blockchain. Furthermore, since this primitive has not been
introduced in the academic literature yet, we formally introduce
it and we prove its security.

Index Terms—Bitcoin, wrapped token, cross-chain, stateless
SPV, privacy

I. INTRODUCTION

Motivation: Today it is possible to use tokens on the Ethereum
blockchain and perform swaps between them: automated de-
centralized exchange methods are increasingly efficient.

This does not happen in the Bitcoin blockchain: a user who
only has bitcoins must either exchange bitcoins manually for
ethers (e.g. via Bisq) or use a centralized service (custodial
and generally threatening to the user’s privacy) to tokenize
their bitcoins on the Ethereum blockchain, for example using
the wBTC token (see Section II for a more detailed analysis
of the current situation). In fact, there are currently no cross-
chain automated decentralized markets: the existing bridges
are mostly between EVM-compatible chains or require manual
intervetion during all phases of the cross-exchange.
Goal: Throughout this paper, we present Bitcoin-Cross-
Tokenized-Bitcoin, or BxTB (pronounced B-cross-TB), a
framework to overcome this problem. Using BxTB a user
A can exchange its bitcoins with a user B in exchange
for a Bitcoin wrapped token. B in this way can come into
possession of “real” bitcoins without interacting with the
custodian of the service.

Although, in theory, the method we present can be used
to exchange any token for bitcoin, in cases other than a
wrapped-token the protocol must take into account several
different assumptions. For example, users A and B must
decide an exchange-rate between token and bitcoin, modifying

the protocol and requiring an introductory step. A hint of how
this can be achieved is presented in the Future Works (Section
VI) of this paper.
Contribution: our contribution can be summarized in the
following list:

• we present a way to exchange wrapped token without
using a mint strategy and consequently bypass privacy-
threatening controls using Stateless SPVs

• we give a formal explanation of the primitive Stateless
SPV: to date the primitive is informally described and
there is no formal discussion on the subject

• we give a proof of the security of the primitive, which
can be of independent interest.

Organization: The paper is so organized. The Related Works
section in Section II gives a brief summary of the current
situation regarding the possibility of swapping coins, with
a particular focus on the exchange between the Bitcoin and
EVM-compatible blockchains. In Section III we give a brief
presentation of the stateful SPVs used by light clients and
present more details on how Stateless SPVs work. In Section
IV we present how the BxTB works: we will delineate how
the exchange between participants works and how to prove the
validity of stateless SPV proofs. In Section V we analyze the
BxTB protocol: in particular, we will prove in Theorem 2 that
it is not economically viable to forge the proof if it is based
on enough blocks, similar to how normally a transaction is
considered “confirmed” in a proof of work blockchain. We also
explain the advadntages between BxTB and HTLC, commonly
used in atomic swaps. In Section VI we describe how we plan
to continue the development of BxTB. Then we conclude.

II. RELATED WORKS

Recall the impossibility result proved by Pagnia [1] regard-
ing the possibility of fair exchange, i.e an exchange such that
no party can cheat the other, as defined in [2]:

Theorem 1 (Fair-Exchange Impossibility). It is not possible
to have a fair exchange that is tolerant of malicious nodes
without a trusted third party in an asynchronous system.

Zamyatin et al. [3] proved that cross-exchange swaps are
equivalent to a fair-exchange. Weakening any of the assump-
tions of Theorem 1 will create a workaround and permit a
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fair exchange: One way is to use third parties (as in the case
of wrapped tokens). The other is to tackle the asynchronicity
assumption via cryptographic methods maintaining decentral-
ization.

In the following we give more details on the methods, which
are the base of the proposal of this paper.

A. Wrapped Tokens

Wrapped Tokens generally follow a deposit-mint-withdraw
approach. As the name suggests, in this paradigm a user
A deposit some coins (tokens) on a specified address on
blockchain BCa and then, thanks to cryptographic methods, a
corresponding token is created (minted) on blockchain BCb

1.
The user can exchange the token in blockchain BCb, or
withdraw it. To perform this last operation, the user A burns,
i.e. destroys, the token on blockchain BCb and redeems it
on BCa. Generally this burning operation is performed by a
service which is generally custodial. In this setting, the service
can be considered a trusted third party that users trust not to
steal their coins (resp. tokens) or censor transactions. Given
the financial operation underlining the service, these custodial
services are generally forced to perform checks on the users,
such as AML/KYC, before letting them “move” the coins
(resp. tokens). We will see when this requirement is not needed
when BxTB is used to exchange tokens.

Since we are interested in exchanges between bitcoins
on the Bitcon blockchain and their wrapped-token version
on other Turing complete chains, we discuss some of the
most used (in volume) tokens representing bitcoins. For a
comparison and a more detailed explanation see [4].

1) wBTC: Wrapped Bitcoin [5] is most used bitcoin-related
token. It was originally deployed on the Ethereum network2,
but it is also instantiated on other blockchains like Tron. Born
in 2018 from a partnership between Kyber network, BitGo,
and Republic Protocol, the goal of this token is to reflect the
value of bitcoins in a 1:1 pegged way using a backed-method,
i.e. every token represent a real coin which is held into custody.
In the following we introduce details about both the protocol
and the actors involved for it to properly function.

Custodian: In this project BitGo manages the custody of
the received bitcoins from the users. In this sense, the protocol
Wrapped Bitcoin is a custodial service. Since it is custodial,
BitGo has to provide the necessary transparency to perform
auditing procedures on the collaterized assets.

Merchant: The merchant is the one who receives the
bitcoins from the users and then, thanks to the protocol,
creates a token on the Ethereum network. The merchant is
a intermediary between the user and the custodian. It is also
involved in the reverse process, i.e. in destroying the token in
the Ethereum blockchain and send the bitcoins to the user on
the Bitcoin blockchain.

1Note that even if the deposited asset can be either native (i.e. a coin) or
non-native (i.e. a token), the minted asset on BCb is inevitably a token

2Currently it is the token with the higher market capitalization, meaning it
is the project that currently has the higher number of bitcoin minted and not
yet burned.

User: The user is the one who sends or withdraw the
bitcoins to the merchant.

The Protocol: At first, the user starts the request to
the merchant and if successful the user sends bitcoin to the
merchant. The merchant then sends those bitcoins to the cus-
todian. The merchant then creates the token on the Ethereum
blockchain. operations on the contract are managed via the
“WBTC DAO”, a decentralized autonomous organization.

If the user wants to withdraw its own bitcoins, the user asks
the merchant to destroy the token on the Ethereum blockchain.
Finally the merchant transfers the bitcoins from the custodial
to the user on the Bitcoin blockchain.

Analysis: As can be seen from descriptions of the proto-
col, the protocol is easy to use from the perspective of the user
and financially secure in the sense that one wrapped bitcoin
will always be redeemable with one bitcoin and vice versa. In
this sense, the user will not lose financial power (in bitcoin
terms) by using this service. On the other hand, the merchant
and the custodians are two third parties which have to be
trusted. In fact the merchant could in theory refuse to send
money to the custodian. This is mitigated by the fact that the
merchant is registered in the DAO and therefore risks legal
persecution if it behaves dishonestly. The other third-party, the
custodian, is effectively managed from a multisignature. While
better than a single point of failure, even if the central authority
is shared between multiple parties, they can still collude and
steal the funds of the users or censor any redeeming. Finally,
this service needs to perform AML/KYC checks on the users,
unless exchanged via a decentralized exchange or using the
solution provided in this paper.

2) Other: There are other wrapping systems. One is called
renBTC. The main difference with wBTC is that the custodian
is not a single third party but a collection of nodes that run
on an external VM, called DarkNodes [6]. The nodes are
responsible to manage the custody of the received bitcoins
from the users, similar to the case of wBTC.

Other methods trade custody (and therefore token-backing)
for algorithms. For example, sBTC [7] is a protocol that
can be considered non-custodial since generation is handled
through a smart contract and project managers do not receive
bitcoins directly. sBTC tokens are issued (or ‘minted’) by
those users who hold the Synthetix native cryptocurrency,
SNX. In practice, the user deposits (or ‘stakes’) SNX in a
decentralized application which acts as an escrow for the
sBTC. The SNX (not bitcoin) therefore acts as collateral for
sBTC: the proportion of SNX:sBTC is generally 4:1 for L1
coins, even though this proportion is not fixed and can be
changed via a DAO. Currently algorithm issuance is under
scrutiny after what happened to the stablecoin UST in the
Terra ecosystem3.

3See for example https://www.bloomberg.com/opinion/articles/2022-05-12/
crypto-crash-contagion-could-go-beyond-bitcoin-ethereum-tether?sref=
1kJVNqnU
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B. Atomic Swaps

While tokenization of a coin or token let users use pegged
tokens on another blockchain, an atomic swap is an exchange
of a coin or token for another. The exchange is atomic in
the sense that parties will always end the protocol owning the
same wealth they entered the protocol with. More formally,

Definition 1 (Atomic Swap). Assume parties A and B want
to exchange a certain number of tokens Ta and Tb running
on blockchains BCa and BCb respectively. Also assume the
parties measure their wealth in terms of token Ta and that
α = Ta

Tb
is the rate of exchange of the tokens. Then a cross-

chain atomic swap is an exchange of n tokens Ta for nα tokens
Tb such that

• If the protocol is successful then A owns nα tokens Tb

and B owns n tokens Ta

• If the protocol is non-successful then A owns n tokens
Ta and B owns nα tokens Tb, i.e. the state of the
participants’ wealth is unchanged

A BCa BCb B

TX1,
TX2

TX3,
TX4

TX2

sig(TX2)

sig(TX1)

TX4

sig(TX4)

sig(TX3)

redeem(TX3)

Good

Bad

redeem(TX1)

sig(TX2) sig(TX4)

Fig. 1. How a HTLC works

A Hash-Time Lock Contract (HTLC) is a protocol that
achieves an atomic swap. The first description of how an
HTLC could work is by Tier Nolan [8]. A HTLC needs two
phases and four transactions between parties A and B; due to
space, we explain here the meaning of the transaction leaving
out the technical way to implement them. Figure 1 shows a
diagram of the operation of an HTLC:

1) TX1:={Pay nTa to <B’s public key> if (x for
H(x) known and signed by B) or (signed by A & B)}

2) TX2:={Pay nTa from TX1 to <A’s public key>,
locked 48 hours in the future signed by A}

3) TX3:={Pay nαTb to <A’s public key> if (x for
H(x) known and signed by A) or (signed by A & B)}

4) TX4:={Pay nαTb from TX3 to <B’s public
key>, locked 24 hours in the future signed by B}

Note that transactions TX2 and TX4 are exchanged and
signed by A and B respectively. They are not broadcasted,
unless one of the participant is behaving dishonestly (see ‘Bad’
in Figure 1).

III. BACKGROUND

Since the goal of the paper is to propose a different way to
achive interoperability doing an atomic swap of Bitcoin based
wrapped tokens, we provide review on stateful and stateless
Simple Payment Verifications related to Bitcoin.

A. Stateful SPV

The first light client has been envisioned by Satoshi Nakamoto
in the Bitcoin Whitepaper itself [9]:

A user only needs to keep a copy of the block
headers of the longest proof-of-work chain, which
he can get by querying network nodes until he’s
convinced he has the longest chain, and obtain the
Merkle branch linking the transaction to the block
it’s timestamped in.

The method has originally been called Simple Payment Ver-
ification (SPV), but it is commonly referred to “light clients”.
In practice, a light client let user discern wether a consensus
has been reached about a transaction or a set of transaction
without making the validation or participating actively into
the consensus mechanism. Light-clients are generally off-chain
software which connect to nodes.

More complex and performant methods have been created
throughout the years. For example, a solution based on Non
Interactive Proofs of Proof of Work (NiPoPoW) [10] extracts
a “deeper” chain which links together blocks whose nonce
would be valid for higher difficulties. More formally, recall
PoW based blockchains (and Bitcoin in particular) have a
difficulty pararmeter d that is representable as the minimum
number of left-most zeroes a block-hash needs to have in order
to be considered valid by the nodes of the chain. Nevertheless,
a nonce can create a hash representing a number of zeros
d′ > d. The solution proposed by the authors of [10] leverage
the higher difficulty of those blocks to link them together.
Although interestigng and very performant in principle, the
method requires a modification of the bitcoin protocol and
can not be instantiated now. Another method is Flyclient [11]
which leverages probailistic sampling and Merkle Mountain
Range (MMR) [12] commitment of all previous blocks. Fly-
client needs some modification to the Bitcoin protocol too.

By definition, any light client assumes that the chain with
the most PoW solutions is the one that follows the rules of
the network and will eventually be accepted by the majority
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of miners. Consequently, a light client has to store at least a
specific subset of the headers of the blockchain in order to
be able to evaluate the presence of transactions: in this sense,
those kind of light clients are considered stateful.

This has been a brief introduction. For more detail and a
complete systematization of knowledge on the matter see e.g.
[13]

B. Stateless SPV

The second kind of light client is the stateless one. It does
not store any headers of the blockchain. These light clients
perform checks on the headers provided by the users.

Stateless SPV have been presented by Jason Prestwich
as a way to solve the problem of relay-maintenance in the
Ethereum blockchain4. Stateless SPVs are currently proposed
for alternative versions of relays but there is no formal
explanation of how them work5. Goal of this section is to
fill this gap.

For our purposes we can model the typical Bitcoin block
as a set of five fields: magic number, block size, block
header (or simply “header” from now on), transaction counter
and transaction list. As in the light-clients case, we are not
interested in the transaction list or the other constants, but only
in the block header, since this is what SPVs (both stateful and
stateless) are interested in.

The fields of the block header are presented in Table I and
we refer to the header of i-th block Bi as Hi and to its fields
via dot-specification, e.g. the nonce field of the i-th block
header is Hi.nonce. The leader election phase of the Proof
of Work uses the header to compute a hash. If this hash is
less than a target L, then the block can be included in the
blockchain. Note that the lower the target L the lower the
probability of finding the right hash. Consequently the lower
L, the more work (i.e. nonce update and rehash) needed by
the miners.

Let hi be the valid hash of the header Hi and note that
hi is included in Hi+1 as Hi+1.hashPrevBlock and that its
numerical representation of hi has to be lower than L.

Assume a user U broadcasts a transaction tx on the Bit-
coin blockchain. Slightly abusing language, we identify the
transaction with its transaction hash. Assume tx is included
in block BN among other k− 1 transactions. Then the vector
vecN containing the transaction and the Merkle tree’s branches
contains the data needed to verify that transaction tx is
included in block BN by comparing the Merkle tree hash with

4See for example [14] which is currently the most popular relay on the
Ethereum network. Despite this, development is stopped at 2017 (last commit)
and as of May 19th 2022 the last transaction is from 1325 days ago. The
main reason seems to be the fact that maintain a relay is costly and there is
no rational incentive to do so.

5We checked in famous repository of paper such as DBLP, Scopus,
Google Scholar and IEEE. Yet, it is possible to see the original talk by
the author at https://youtu.be/njGSFAOz7F8. An informal explanation of how
Stateless SPV work and their security is proposed in https://ethresear.ch/t/
stateless-spv-proofs-and-economic-security/5451

TABLE I
BLOCK HEADER FIELDS

Field Description
Version The version of the block.
hashPrevBlock The hash of the previous block in the chain.
hashMerkleRoot The hash of the Merkle root of the transactions.
Time The time the block was created.
nBits The target of the block (compressed form).
nonce The nonce of the block.

HN .hashMerkleRoot. For example, with reference to figure
2, the vector vecN would be:

vecN = [tx,H0, H23, H4567] (1)

Assume a smart contract SC is capable of evaluation hash
functions and make integer comparisons. Therefore SC can re-
liably check if tx has been confirmed in the Bitcoin blockchain
via the evaluation of a proof π such that:

π = [vecN ,HN ,HN+1, . . . ,HN+nblocks
] (2)

where nblocks is the number of blocks needed to be sufficiently
secure that π has not been forged. See Section V-B for a more
detailed security proof.

H0...8

H4567 H0123

H67 H45 H23 H01

H7 H6 H5 H4 H3 H2 H1 H0

tx

Fig. 2. Particular merkle tree structure of a block with transaction tx. In this
case the merkle leafs needed for the proof π are (H0, H23, H4567)

IV. DESIGN

A. Setting and Notation

We assume the existence of a decentralized-application
platform PLAT which acts as a match-making algorithm be-
tween parties and provides a secure channel between parties6.
The goal of PLAT is to match parties who want to ex-
change bitcoins for a wrapped equivalent on a Turing-complete
blockchain, we will call Tchain. We call this exemplary

6This can be implemented with end-to-end encrypted communication so
that PLAT never knows anything more about the exchange,see e.g. [15]
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Init

Expect Payment

Expect Proof

A Redeem B Redeem

Success Fail

B does not
put
wrBTC

B
puts

wrBTC

A
puts

π

A does not
provide π

Fig. 3. State succession of Algorithm 1

wrapped token wrBTC and we assume it is build on the model
of those explained in Section II-A.

After the match, PLAT interacts with a smart contract SC
deployed on Tchain. The smart code’s pseudocode can be seen
in Algorithm 1. Note that we do not explain how the matching
works, since it is outside the scope of this paper: we assume
the match has been done and we describe how parties interact
to complete the protocol.

We also assume two parties. Alice, A, that owns bitcoins
and wants to exchange them for wrBTC on Tchain. Bob,
B, that owns wrBTC and wants to exchange it for bitcoins.
For simplicity, we assume the exchange amount is amt, the
timeout on the exchange is T and the number of blocks to build
the stateless SPV proof π is nblocks (See Equation (5) for a
practical way to decide on nblocks) . We assume that parties
agree on those parameters during the match-making phase,
non-necessarily without suggestions or defaults provided by
the platform PLAT. Note that there is no need to agree on
an exchange rate since the currencies are supposed pegged.
We briefly mention a way to exchange non-pegged tokens in
Section VI of this paper.

We denote the addresses of parties in the following way.
Since both parties needs to have two addresses (one on Bitcoin
and one on Tchain), we denote the addresses of Alice and
Bob on Bitcoin as AddrABTC and AddrBBTC respectively
and on Tchan as AddrATCH and AddrBTCH respectively.
The exchange of meaningful data between A and B, e.g.
addresses and amount, can be public or exchanged privately
in the channel. From a practical point of view this does not
change anything from a privacy point of viewd: all information
becomes public once the smart contract is used by the parties.

B. The Swap

We assume that B initialize the smart contract SC by calling
the PREPROCESS (line 1) and the INIT functions (line 14). The
latter function put set the State equal to Init.

Algorithm 1 PLAT’s smart contract SC
Require: AddrABTC, AddrBBTC and AddrATCH,

AddrBTCH are valid addresses
Require: amount amt is a positive integer
Require: timeout T is a positive integer

1: function PREPROCESS(AddrABTC, AddrBBTC,
AddrATCH, AddrBTCH, amt, T , L)

2: Struct Exchange = {
3: AddrABTC = AddrABTC,
4: AddrBBTC = AddrBBTC,
5: AddrATCH = AddrATCH,
6: AddrBTCH = AddrBTCH,
7: amt = amt,
8: T = T
9: Lmax = L ▷ Lmax is the maximum target

accepted as difficulty in headers
10: }
11: States = { Init, ExpectPayment, ExpectProof, Re-

deemable, Success, Fail }
12: setState(sid,Init)
13: end function
14: function INIT(sid, Exchange)
15: if State == Init then
16: map sid to Exchange
17: setState(sid,ExpectPayment)
18: end if
19: end function
20: function RECEIVEWRBTC(sid, Exchange)
21: if msg.sender == AddrBTCH &
22: msg.value == amt &
23: State == ExpectPayment then
24: Event(Exchange, sid,received, {AddrBTCH,

amt})
25: setState(sid,ExpectProof)
26: end if
27: end function
28: function RECEIVEPROOF(sid, Exchange, π)
29: if msg.sender == AddrATCH & time < T &
30: Verify(π, Exchange)== True & State == Init then ▷

Verification is explained Section IV-C
31: send(AddrATCH, amt)
32: Event(Exchange, sid,sent, {AddrATCH, amt})
33: setState(sid,Redeemable)
34: REDEEMWRBTC(sid, Exchange)
35: end if
36: end function
37: function REDEEMWRBTC(sid, Exchange)
38: if msg.sender == AddrATCH &
39: time < T & State == Redeemable then
40: send(AddrATCH, amt)
41: Event(Exchange, sid,sent, {AddrATCH, amt})
42: setState(sid,Success)
43: else if msg.sender == AddrBTCH &
44: time > T & State == ExpectProof then
45: send(AddrBTCH, amt)
46: Event(Exchange, sid,withd, {AddrBTCH, amt})
47: setState(sid,Fail)
48: end if
49: end function

2022 Fourth International Conference on Blockchain Computing and Applications (BCCA)

147
Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on July 20,2024 at 14:36:29 UTC from IEEE Xplore.  Restrictions apply. 



After the initialization, B is required to put amt wrBTC in
the smart contract (line 20) to advance the protocol7. If B does
that before the timeout, the State of SC is set to ExpectProof.
Note that A has not provided any bitcoin at this point: even
if B fails this step, A does not lose anything.

If B behaves honestly, A broadcasts a transaction from
AddrABTC to AddrBBTC on the Bitcoin blockchain. After
waiting for the creation of nblocks blocks on the Bitcoin
blockchain, A builds the proof π. After that, A calls SC’s
function RECEIVEPROOF (line 28) from AddrATCH: one of
the inputs of the call is the the proof π. If A provides a correct
π before the timeout (see Section IV-C and Algorithm 2 to see
how the verification works), the State of SC is set to Redeem
(see Figure 3 to see how States of SC change) and A can
redeem the wrBTC (line 39). On the other hand, if A fails to
provide a correct π the state of SC ramains ExpectProof: after
the timeout, B can redeem the wrBTC (line 44).

The protocol is atomic (see Definition 1) and we show that
in Section V-A.

C. Proof Validation

We are left to explain how the statless SPV proof π is
validated. The verification exploits the fact that it is highly
expensive to produce a formally valid proof in the dishonest
case: see Theorem 2 in Section V-B.

The first thing to check is if the transaction tx is included
in the Merkle tree of block BN . It is easy to build the vector
vecN (see Equation (1)) for A which has access to the Bitcoin
blockchain. The Merkle root hash is included in the header
HN , see Table I, and to perform this check the function only
needs the correct hash function.

If tx is included in the Merkle tree, then the vecN is valid
and it is possible to proceed and chek if the subsequent headers
are built one upon the other with a sufficient difficulty. With
reference to Algorithm 2, this is performed from line 7 through
15.

V. ANALYSIS

A. Atomicity

To prove that the protocol is atomic, we need to show that no
party would incur in financial loss in case of abort or incorrect
execution. We do that with reference to Figure 3.

Of course if no initialization is done (Init), then neither A
nor B incur in financial loss since there is no deployemnt of
capital. After that, the smart contract expect a payment from B
(ExpectPayment). Assuming incorrect execution, at this step,
B does not put any wrBTC in the smart contract. Similar to
the case of the initialization, A does not incur in financial loss
since A has not deployed capital yet.

7Note that the PREPROCESS, INIT and RECEIVEWRBTC can in principle
be collapsed into only one function: B would certainly save fome fees
doing that. We decided to keep this functions separated in Algorithm 1 for
two reasons. The first one is that keeping the funcion separated help the
understanding of the protocol. The second reason is that this way the platform
PLAT could theoretically initialize SC in place of B, possibly as promotion
to make users save on fees.

Algorithm 2 Verification procedure of SC
Require: π = [vecN ,HN ,HN+1, . . . ,HN+nblocks

] ▷
Equation (2)

Require: π.vecN = [tx,Hi, Hjk, . . .] ▷ Equation (1)
Require: Exchange as defined in Algorithm 1
Require: H(·) hashing function of Bitcoin

1: function VERIFY(π,Exchange)
2: vec = π.vecN
3: VerifyMerkleTree(vec,HN .hashMerkleRoot)
4: Hprev = π.HN

5: Lmax = Exchange.Lmax

6: assert Hprev.nBits ≤ Lmax ▷ Check that the target
is not too large

7: for i = 1, . . . , nblocks do
8: Hcur = π.HN+i

9: assert Hcur.nBits ≤ Lmax

10: if H(Hprev) == Hcur.hashPrevBlock then
11: Hprev = Hcur

12: else
13: return False
14: end if
15: end for
16: return True
17: end function

On the other hand, if B does put the right amount of wrBTC
in SC, then A is expected to make a payment from AddrABTC

to AddrBBTC on the Bitcoin blockchain, then build and send
the proof π to SC. In this case, if A does not make a payment
before the timeout or if A provides an incorrect proof (we
show in Theorem 2 the sufficient condition for B to be sure
A will not be able to creat an invalid proof which is accepted),
then B does not incur in financial loss since B will be able to
redeem the wrBTC from SC by calling the REDEEMWRBTC
function.

Finally, if A and B follow the protocol correctly, then A
can redeem the wrBTC on Tchain by putting π in the RE-
CEIVEPROOF function, since the REDEEMWRBTC function
is called from RECEIVEPROOF.

B. Security

We want to prove that it is economically secure to validate
a transaction with no stored block header but only with the
nblocks headers provided by the user (which of course can
potentially be forged by it). By economically secure we mean
that the cost of forging a proof is higher than the amount of the
transaction the user needs to prove the inclusion of. Formally:

Definition 2. A proof π defined as Equation (2) of transaction
tx with amount amt is (nblocks, p

∗)-economically secure if the
expected cost of having a probability of p∗ of producing π is
higher than amt.

To prove it, we will leverage the nBits field of the block
header (see Table I). Also we assume that the difficulty/target
do not change between block N and N + nblocks. This is not
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a big constrain since the difficulty changes once every 2016
blocks in Bitcoin and nblocks is generally less than 10 (note
that a Bitcoin transaction is generally considered confirmed
after 6 blocks). Furthermore, it will be easy to see that if
the difficulty changes between block N and N + nblocks,
then taking max(HN .nBits,HN+nblocks

.nBits) as difficulty
solves the problem.

We briefly formalize the leader election phase of the
Nakamoto consensus protocol which is based on the HashCash
system [16]: Given a target L, the work of a miner is to
find the nonce nonce for a block B such that8 H(B) < L,
where H is the hash function used by the system, SHA256
in the Bitcoin case. In this case we say that nonce is a valid
nonce for block B. Valid outputs for the hash function used in
Bitcoin range from 0 to 2256−1, but L is much less than that.
So the number of available hashes for block B is L and the
probability of finding one is p = L/2256. “Extracting” hashes
is therefore a Bernoulli process of probability (and mean) p. To
give an idea with real values, on May 25, 2022, the difficulty
is d = 31251101365711 9. The target L can be computed from
the difficulty by doing L = 2224/d (the exact computation to
arrive at this relation between L and d can be seen in [17]).
Therefore p ≈ 7 × 10−24. The probability of 1 success in n
Bernoulli trials is p∗ = np(1− p)n−1. For example, with the
values presented above, we need n = 1026 trials to be ≈ 60%
sure of finding a valid nonce. Consequently, assuming C to be
the cost of computing a terahash (i.e. 1012 trials), being 60%
sure of producing one single header (i.e finding a nonce) has
an expected cost EC0.6

1 = 10−12 · n · C.
We can now prove that:

Theorem 2. Given a target H.nBits = L, let p = L/2256

and p∗ be the probability of success in finding a suitable hash
for one header H after np∗ trials. Assuming C to be the cost
of computing a terahash, then the expected cost ECp∗

nblocks
in

being p∗ sure of finding nblocks nonces for nblocks headers is:

ECp∗

nblocks
= nblocks · 10−12 · np∗ · C (3)

Then a sufficient condition to for a protocol between rational
participants to achieve (nblocks, p

∗)-economic security for a
proof π of transaction tx with amount amt is

ECp∗

nblocks
≥ amt (4)

Proof. It is easy to compute ECp∗

nblocks
of Equation (3) noting

that all trials are independent events. To see the sufficiency
of condition in Equation (4), first note that generally the cost
of producing hashes is shared by all the miners in the honest
case and therefore comes at a cost of ≈ 0 for the honest user
(it only has to pay the fees of transaction tx)

On the other hand, if the user is dishonest and needs to forge
π, then it incurs a potential loss: it has to bear the expected cost
ECp∗

nblocks
without being completely sure of finding a solution

8The nonce is part of the block header and therefore part of the block, for
this reason it does not appear explicitly, see Table I.

9See https://bitinfocharts.com/comparison/bitcoin-difficulty.html

within a certain timeout, since there is still a probability of
1− p∗ of not producing the proof even after incurring in the
ECp∗

nblocks
cost10. Therefore, the user has no interest in forging

a proof π in the case of Equation (4) since it is expected to
lose more than it has to gain.

Since Equation (4) is not operational, Equation (5) gives a
practical way for participant B, or PLAT, to enforce economic
security of the protocol for any amount amt of every transac-
tion:

nblocks ≥
amt

10−12 · np∗ · C
(5)

C. Privacy and Communication

BxTB is as private as the HTLC described in Section II-B.
In HTLCs in particular the hash created by the initiator A acts
a indexing of the transactions in Bitcoin and in the other chain
used for the swap. Using this index it is possible to learn A and
B’s addresses in both blcokchains and the amount exchanged.
These are the same information an external observer and the
platform PLAT can gather by looking at the smart contract SC.

On the other hand, BxTB achieve the same results the HTLC
achieves but with less transactions, even in the worst case. In
fact, BxBT requires two transactions in the worst case instead
of four as in the HTLC case: One transaction from B to SC
to initialize the smart contract and deposit the tokens; One
transaction from B to SC to withdraw the funds after the
timeout. The worst case is considered to be the case where A
does not follow the protocol, since if B does not follow the
protocol then no transaction is being done by definition (B
does not initialize the smart contract and/or does not deposit
the tokens in SC).

VI. FUTURE WORKS AND PERSPECTIVES

As we mentioned before, BxTB can in principle work for
any couple of tokens, from a Proof-of-Work blockchain to a
wrapped-token on any Turing complete blockchain. In fact,
assuming the hash function(s) used for the leader election is
implemented in the smart-contract language of Tchain, the
basic checks are trivial to make and shared by all Proof-of-
Work blockchains. Some changes to the protocol are needed:
for example, if the tokens are not pegged, then the parties need
to agree on the rate of the exchange as in a general atomic
swap (see Section II-B). Technically this rate can be decided
while posting the order on PLAT, but some considerations on
privacy and communication-complexities should be studied.

BxTB can also be extended by forcing A to put some
collateral. In the currenct design of BxTB, A can potentially
abort the protocol after the initialization or intentionally put
an invalid proof. While that would not hurt B financially
(assuming nblocks has been chosen in accordance to Equation
(5)), it is still a problem since B’s capital is blocked for a

10It is possible that ECp∗
nblocks

and amt do not share the same currency
to be evaluated. In this case we assume amt is evaluated using the currency
ECp∗

nblocks
is evaluated.
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certain amount of time. This is a common problem in atomic
swaps and it is present in current implementations of HTLC
too (see e.g. [18]). The collateral would act as an incentive
for A to continue the protocol, since it can be slashed in
cases where A puts an invalid proof or simply does not follow
through the protocol.

In the future we plan to do a full implementation of the
protocol assuming an exchange between Bitcoin and a Bitcoin
wrapped-token using the smart-contract language of Solidity
in a private instance of Ethereum.

VII. CONCLUSIONS

We presented BxTB, a new protocol to exchange bitcoin
wrapped tokens without incurring in privacy threatening con-
trols. We achive exchanges leveraging stateless SPVs, prac-
tically describing how to create a light client in a smsart
ocntract. We proved the economic security of the protocol and
we achieve atomicity using less transactions between parties
even in the worst case when one party is dishonest.
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