DL T-based Personal Data Access Control with
Key-Redistribution

Fadi Barbara*, Mirko Zichichif, Stefano Ferretti*, Claudio Schifanella*
*Department of Computer Science, University of Turin, Italy
t1oTA Foundation, Pappelallee 78/79 10437 Berlin, Germany
jr’Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Italy
fadi.barbara@unito.it, mirko.zichichi@iota.org, stefano.ferretti@uniurb.it, claudio.schifanella@unito.it

Abstract—Data management services frequently grapple with
trust issues due to the easy access service managers have to
server-stored data. Although decentralized data services and
smart contracts offer solutions to the pitfalls of centralized au-
thorities, they also raise concerns regarding compliance with data
protection laws like GDPR. Historically, encryption has mitigated
some of these issues but at the expense of hindering data sharing.
To address this, we introduce the Key-Redistribution Proxy
Re-Encryption (KeRePRE) system—a decentralized, encrypted
data service that incorporates authorization servers as part of
a threshold proxy re-encryption scheme. This system leverages
a key-redistribution mechanism to seamlessly add or remove
managers in a trustless environment, achieving proactive security.
Our proof of concept, implemented via smart contracts on a
Layer 2 of IOTA, showcases an access control list that authorizes
read-only access by the servers.

Index Terms—Proxy re-encryption, Threshold scheme, GDPR,
Data Sharing, Decentralized File System

I. INTRODUCTION

Nowadays, data are of high value to individuals, businesses,
and governments. The increasing amount of data generated by
various sources like mobile devices, sensors, and social media
has given rise to big data and data-driven decision-making.
However, the volume and complexity of data have created
significant challenges in managing, processing, analyzing, and
protecting them, especially regarding the new directives related
to data protection such as GDPR [1]. To overcome these
challenges, data intermediation has become crucial. A data
intermediator acts as an intermediary between data holders
and recipients, facilitating the flow of data while ensuring its
quality and security.

Decentralized systems such as blockchains or Distributed
Ledger Technologies (DLTs) have gained considerable at-
tention in data intermediation. These systems allow data
recipients and processors to be limited to the data holder’s
instructions through smart contracts, enabling intermediation
with a higher level of control over data, see e.g. [2]. De-
centralization, however, necessitates cryptography to secure
decentralized systems and protect data while sharing it. In a
trustless or semi-trusted decentralized system, comprehensive
security is essential to maintain user trust. To solve these
problems, approaches such as (¢, n)-threshold cryptosystems
involve multiple parties performing a cryptographic operation
together, using a share of a secret in a secret-sharing scheme,

in order to transform one central party into a committee. In
particular, a Threshold Proxy Re-Encryption (TPRE) scheme
delegates some data intermediaries (proxies) to re-encrypt the
encryption key in favor of a data receiver [3]-[5].

However, most threshold cryptosystems assume that data
intermediaries will protect their secret shares, which works as
a theoretical assumption but does not reflect the real-world
conditions. For example, Verichain recently exposed a critical
key-extraction attack [6], which invalidates implementations
of commonly used threshold cryptosystems. Similarly, the
security firm Trail of Bits found a critical bug in common
threshold signature libraries [7]. In these cases, the presence
of a key redistribution would have been put to good use, in
order to remove the vulnerability from the present committee.
In this paper, we propose a Key-Redistribution Proxy Re-
Encryption (KeRePRE) for TPREs to manage situations where
parties lose their share, are corrupted or faulty, in a semi-
trusted decentralized environment. The mechanism enables
key rotation, addition, or deletion [8] and helps manage
compromised or leaked keys and handle situations when new
parties are added or old parties are dismissed.

Furthermore, we focus on a specific strand of literature
concerned with data access control managed using crypto-
graphic techniques in a decentralized manner. The literature
usually deals with personal data, which requires strong data
protection and security mechanisms because they identify or
render identifiable a data subject [2], [3], [9], [10]. We propose
a DLT based Personal Data Store (PDS) to enable data subjects
to decide how (through smart contracts) and where to store
their data and handle data encryption and key distribution
using TPRE with the key redistribution mechanism. The PDS
comprises two main components, Decentralized File Storage
(DFS), which stores the data to encrypt or decrypt, and a
DLT, which avoids the typical drawbacks of server-based
approaches, such as censorship or single-point-of-failure, and
offers features like data traceability, verifiability, and smart
contract execution.

Our Contributions: In summary our contributions are:

e Our proposal, KeRePRE introduces a novel threshold-
based proxy re-encryption scheme that supports key-
redistribution and proactive security.

o To showcase the feasibility of our proposal, we have
developed an independent implementation that comprises

both the off-chain and the on-chain management of the
data using smart contracts on the IOTA-based L2. The
code is publicly available on GitHub'.

o We show that KeRePRE creates a decentralized Personal
Data Store (PDS) linked to a Distributed Ledger Tech-
nology (DLT) that is fully compliant with the GDPR
regulations.

o We demonstrate that KeRePRE is secure in the real/ideal
paradigm and achieves proactive security

Outline: The structure of this paper is organized as follows:
In Section II, we introduce the fundamental components
of the KeRePRE system. Section III details the operation
of KeRePRE within the Umbral system context. We then
present the operational functionalities of KeRePRE and assess
KeRePRE’s performance in Sections IV and V, respectively.
Section VI provides a security analysis of KeRePRE from
cryptographic and data-compliance perspectives. In Section
VII, we review related works in the areas of threshold proxy
re-encryption schemes and personal data sharing mechanisms
utilizing Distributed Ledger Technology (DLT). Finally, Sec-
tion VIII offers concluding remarks.

II. BACKGROUND

In this section, we give an overview of the system’s
architectural components needed to understand Section III.
Throughout this section, we assume two parties: a data-holder
(DH) which has some data stored in a decentralized personal
data-space (PDS) and a data-receiver (DR) which wants to
access it.

A. Threshold cryptosystems

A (t,n)-threshold cryptosystem involves multiple parties
in a set P = P;;c.7 performing a cryptographic operation
together. The key feature of this system is that a minimum
number of parties, referred to as the “threshold” ¢, must
participate for the cryptosystem to succeed. In other words,
the cryptosystem will only work if at least ¢ out of the n
parties are honest and follow the protocol. Since generally a
cryptosystem is used to give access to some information, we
say that ¥ = (¢,n) is an access structure.

Algorithm 1 LsssPrep for a (¢,n) secret sharing

Require: 7: set of identities of parties, ¢: threshold, s: secret

I: n=1lenZ

2. fori=1...t—1do > Initialize a; for: =0,...,t —1

3: a; g F

4: end for

5: a0 =5 >g(0)=s

6: Initialize g(-) = ag + Zf;i a;t > Polynomial
initialization

7. for ¢ in Z do > The values of Z must be numbers in the

field F
: Send (i, ¢(7)) to party i
9: end for

Thttps://github.com/disnocen/umbral-rs

Two research strands involve threshold cryptosystems:
threshold signing and secret sharing. On the one hand, (¢,n)-
threshold signing, considered to have been introduced by
Desmedt in 1987 [11], is a process where t-of-n parties are
involved into signing a message on behalf of all n participants.
On the other hand, in (¢,n) secret sharing a secret s is split
into n different parts called shares (or fragments) such that
t of them are necessary to reconstruct the original s. Among
many secret sharing schemes, we focus on the Shamir Secret
Sharing (SSS) one since it is the one used in both Umbral and
the redistribution mechanism our work is based on.

The scheme is based on polynomial interpolation over a
field. In a field F, it is well known that given ¢ points in the
2-dimensional plane {(x;,y;)}!_; there is one and only one
polynomial ¢(z) of degree t — 1 such that g(x;) = y; for each
i =1,...,t. Assume a secret number s. As mentioned, this
secret can be split and shared to n parties in such a way that
t of those shares are needed to reconstruct s: see LsssPrep in
Algorithm 1.

Since the shares are distinct points on a plane for polynomial
q(+), the SSS scheme uses Lagrange Polynomials applied to
the shares, as presented in Algorithm 2, to reconstruct the
secret.

Algorithm 2 LsssRec for a (¢,n) secret sharing

Require: 7: set of identities of parties, ¢: threshold
1: n=1lenZ

2: Wait for ¢ shares i;,,q(i;,) from parties i;,,...,i;, € T

33 L=0

4: for k=1...tdo ‘

5 Ay = Hfu:l,w;ék 27“7_”17 > Create a Lagrange basis

6: L =1L+ M\q(ij,) Y Y Use Lagrange polinomials to
create ¢(0) = s

7: end for

8: return L >L=gq(0)=s

B. Proxy re-encryption schemes

A well-known problem faced by data holders (DHs) in
a decentralized PDS is the lack of direct control over the
outsourced data in £ [12], [13], which raises security concerns,
especially in (pseudo) anonymous settings.

One of the most effective ways to deal with this issue is
for the DH to encrypt the data before uploading it to the
PDS [14]. This naive solution, though, inhibits the delegation
of access (i.e. “sharing”) to a data receiver DR of a piece
of data pd;, since the process requires DH to download, re-
encrypt pd; for DR and re-upload pd;. To solve this issue
Blaze et al. introduced the Proxy Re-Encryption (PRE) scheme
in [15]. A PRE is a semi-trusted proxy that transforms a
cyphertext encrypted for DH to a cyphertext encrypted for
DR, without decrypting the cyphertext or leaking the related
plaintext. Specifically, with a PRE, DH can encrypt pd; under
its own public key before uploading it to the PDS. Then,
after receiving the request of data sharing from DR, DH can
generate a proxy re-encryption key and send it to the PRE. The

PRE is then able to re-encrypt pd; into a cyphertext under the
public key of DR.

While these cryptographic primitives solve the privacy prob-
lem (the proxy can not read the data stored/sent), it does not
solve the censorship problem: the proxy can block any request
and decline any sharing of the data. In that regard, the proxy
acts as a trusted and custodial (of data) party.

Similarly to other projects, it is possible to mitigate this risk
by employing multiple nodes together and create a threshold
cryptosystem for proxy re-encryption nodes, in other words
a threhsold PRE. One way to achieve that is explained in
the work by Nunez [5], which is called Umbral. Umbral is
a threshold PRE which uses a Key Encapsulation Mechanism
(KEM) to obtain a Data Encryption Method (DEM). More
explicitly, in Umbral, each file pd € D from a DH is
encrypted with a symmetric key K € K. The encrypted file is
a couple (Enc(pd, K),Encpi,,, (K)). The Umbral threshold
PRE leverages the ReKeyGen procedure to output multiple
shares of the re-encryption key via a SSS scheme. These shares
are called fragments or more concisely kFrag, in [5], and
are distributed to the node operators as part of the ReKeyGen
routine. More formally:

Definition 1 (TPRE). A (t,n)-threshold proxy re-
encryption scheme (TPRE) is a tuple of algorithms
(KeyGen, ReKeyGen, Encapsulate, ReEncapsulate,
DecapsulateFrags):

o (ska,pka) < KeyGen(1*) On input security parameter
A, the key generation algorithm KeyGen outputs a pair
of secret and public keys (ska,pka) for user A.

e kFragy,...,kFrag, < ReKeyGen(ska,pkp,n,t): On
input the secret key ska of user A (generally the DH),
the public key pkp of user B (generally the DR), a
number of shares n and a threshold t, the re-encryption
key generation algorithm ReKeyGen computes the re-
encryption key vk A_, p and then uses SSS scheme to share
it in n different kFrags, where kFrag; = (id;, rk;, opt),
with id; the identity of node 1, rk; its share of the re-
encryption key and opt optional arguments depending on
the implementation.

e (K,vk) < Encapsulate(pka): On input the public key
pka of user A, the algorithm Encapsulate outputs a
symmetric key K € K used to encrypt the data and a
capsule vy = Enc(K).

e cFrag; <« ReEncapsulate(kF'rag;,vi): On input
a key share kFrag; and a capsule g, algorithm
ReEncapsulate outputs a share (or fragment) of the
capsule cFrag; of the capsule .

e K <« DecapsulateFrags(skp, pka, {cFrag}t)): On
input the secret key skp of user B, the public key
pka of user A and at least t cFrags, algorithm
DecapsulateFrags outputs K (note that it is the same
K of algorithm Encapsulate).

Figure 1 highlights the flow of the procedures which we
explain in details in Section IV

From Definition 1, it is easy to see that a PRE is an
extension of a public key encryption scheme (PKE). Therefore
a PRE must follow the security models of PKEs which present
an interesting challenge. On the one hand, PREs have to
guarantee confidentiality and validity of the cyphertexts as
any PKE. On the other, PREs have to allow re-encryption of
cyphertexts. A thorough overview of how different schemes
deal with the challenge is presented by Nunez et al. in [5].

C. Key redistribution mechanisms

Most threshold cryptosystems, and particularly secret shar-
ing schemes, assume parties will take good care of their share.
In fact, if some party P; loses a share, it is generally said that
P; is corrupted or faulty. No further analysis on P; is done,
since from the point of view of the threshold cryptosystem, no
single party is important as long as the majority or minority
of them is still honest, depending on the access structure of
the cryptosystem.

On the other hand, real world deployments of these systems
have to deal with such problems. For example in Proactive
Secret Sharing schemes [16], [17] the participants refresh (or
rotate) their key shares periodically, in order to avoid these
kinds of problems or at least mitigating them. The process is
known as key-refresh or key-rotation.

However, in proactive secret sharing schemes, the access
structure is not changed: the set of parties required for thresh-
old secret sharing are the same before and after the key-refresh.
Therefore, the only way to extend or shrink the access structure
once it is in place is by performing a new distribution of the
shares. This is costly, since it requires DH to recompute all
the shares. Consequently, new approaches have been proposed
in the literature to deal with this issue.

Among those proposals, one that is beneficial for the goal of
this paper is the process of redistribution of shares. Unlike key
refreshing schemes, a redistribution of shares is performed by
the AS, supports the change of the access structure and requires
no input by the DH (beside some authorization if needed by
the general system).

In this proposal and proof of concept’, we use a redistri-
bution method as presented by Desmedt et al. in [11]. The
method leverages a SSS scheme once more and treats each
share as a secret on its own. More formally, given a (t,n)-
SSS scheme with shares sq,...,Sy:

o sh,...,s,, < DesRedistr(s1,...,s,): On input t <

k < n shares from a (¢,n)-SSS for secret s, algorithm
DesRedistr outputs m secret shares s}, ..., !, such that
k of them are needed to reconstruct s.

In practice DesRedistr transforms a (¢,n)-SSS into a (k, m)-
SSS.

It is easy to see that if £ =t and m > n then DesRedistr
adds a new party to the access structure, while if t <m < n
then DesRedistr removes party from the access structure. We

A working implementation of the key redistribution for
KeRePRE can be found at https:/github.com/disnocen/umbral-
rs/blob/master/src/internal/keyredistrib.rs

will see in Section VI-A the constraints on k£ and m related
on t and n. A working example tailored to our purposes is
presented in Algorithm 3.

D. IOTA

IOTA [18] operates as a DLT based on the Tangle, a
decentralized data structure replicated across a network of
nodes. The Tangle constitutes a directed acyclic graph of
blocks (a block-DAG), where each new block is linked to
multiple older ones. In the IOTA Tangle, participants seeking
to issue a block containing a transaction must validate two pre-
ceding blocks, thereby replacing the conventional transaction
fee concept. This validation process involves users contributing
to the network’s security and functionality by validating other
transactions. To issue a new block, a user is required to per-
form a small Proof-of-Work (POW) computation, representing
a cryptographic puzzle that demands a specific amount of
computational effort to solve. Notably, the difficulty level of
POW in IOTA is intentionally kept relatively low compared to
traditional blockchain networks such as Bitcoin or Ethereum.

Furthermore, the IOTA ecosystem supports smart contracts
through the IOTA Smart Contracts (ISC) protocol. While the
IOTA Tangle functions as a Layer 1 (L1) network, the ISC
protocol establishes a Layer 2 (L2) network of nodes executing
an Ethereum Virtual Machine (EVM)-compatible blockchain.
The EVM, standing for "Ethereum Virtual Machine," is a
widely adopted virtual machine for running smart contract
implementations, utilizing the Solidity programming language.
ISC, as an L2 framework, introduces quasi-Turing complete
smart contracts to the IOTA technology stack. It operates
as a versatile, multi-chain environment capable of running
numerous parallel L2 Blockchains atop the L1 IOTA ledger.
Each chain maintains an independent ledger state, utilizing
an account-based model anchored to a specific IOTA unspent
transaction Output (UTXO) ledger account on L1.

Each chain within the ISC protocol can host multiple smart
contracts, fully composable via synchronous calls within the
chain. Simultaneously, cross-chain transactions are facilitated
through an anchoring mechanism on L1, promoting asyn-
chronous composability. This design enables smart contracts
to interact trustlessly across different IOTA Smart Contract
chains.

III. KEY REDISTRIBUTION

Umbral, which lacks a key redistribution mechanism, cannot
be directly used for key rotation or redistribution. However, in
this section, we demonstrate how we can expand Umbral’s
capabilities to create a threshold PRE that is suitable for real-
world use. We will explain in Section IV how the system can
be applied in a DLT-based PDS to enhance its security and
perform tasks such as key addition, key deletion, or simple
key-refresh. The terminology used is clarified in Section III-A,
where we also introduce the actors and the architecture model.
The key-redistribution mechanism in KeRePRE is divided into
two algorithms: one for managing the kF'rags (Section III-C)
and the other for managing the cF'rags (Section III-D).

TABLE I
COMPARISON OF THE NAMES BETWEEN THE UMBRAL PROJECT AND OUR
EXTENSION KEREPRE

KeRePRE Umbral

Data Subject N/A

Data Holder Alice

DEFES Provider N/A

Authorization Server Proxy Re-encryption Node
Data Recipient Bob

A. Actors and architectural components

1) Actors: We define different actors that have one or more
roles in the system. In detail, we identify the following actors:

e Data subject (DS) - The natural person that uses a
personal device that in turn generates personal data.

o Data holder (DH) - The legal or natural person who has
the right or obligation or the ability to make available
specific data (both personal and non).

e Data intermediary (DI) - The legal or natural person
who mediates between those holders who wish to make
their data available and data recipients. We have two
specializations of data intermediary:

— Storage Provider (SP) - The one that provides the
access to the DFS. This actor provides functionalities
attributed of storing and serving (encrypted) personal
data.

— Authorization Server (AS) - The one that provides
the access to the DLT to the authorization service,
i.e., takes part to the cryptosystem.

e Data recipient (DR) - The legal or natural person to
whom the data holder makes data available.

Since the names of the actors involved in KeRePRE are
different form the usual names due to the specific use case
involved, we provide a comparison of the names for easy
access in Table I

2) Architecture Model: In the following, we use a model
to refer to the elements managed in the system.

o The data holder actor controls a set of personal data that
have not been encrypted, ie., D = {pd; | 1 < 1 < o}
where o is the amount of pieces of data DH has.

o Furthermore, K = {kpq, | Ency,, (pdi),1 < 1 < o} is
the data holder’s set of keys used to encrypt personal
data and & = {epd, | epd; = Ency,, (pdi),1 <1 <o} is
the set of encrypted personal data.

o Data holders and authorization servers control a set of
capsules C = {7V, | Vo, = ENCpripyy (kpa,),1 <1 <
o}, where pkpy is the public key of the data holder (see
Definition 1), that contain a key used to encrypt a piece
of personal data.

o We consider that all DFS providers SP store the data
holders’ set of encrypted personal data edp € £ and the
associated set of decentralized identifiers used to identify
the epd. In this case, the decentralized identifier is equal
to a hash pointer obtained by hashing the epd, i.e., HP =
{hDepd, | hpepd, = Hash(epd;),1 <1 < o} where Hash

is a predetermined hash function (e.g., in the IPFS DFS
these hash pointers are CIDs). Thus, hpepq, is both the
identifier of the epd, datum in the DFS and the on-chain
hash pointer, i.e., that will be stored in the DLT.

B. Threat Model and Security Goals

We assume that all cryptographic primitives are secure and
adhere to the established recommendations. Specifically, we
assume that DH, DR, DS and the authorization servers utilize
a permissionless blockchain based on elliptic curve cryp-
tography (ECC) within groups where the discrete logarithm
problem is difficult. We also assume that encryption algorithm
chosen to perform asymmetric and symmetric encryption
are secure and that the key encapsualation mechanism is
compatible with those. Furthermore, the authorization servers
must control less than one-third of the resources necessary to
engage in the consensus algorithm, whether these resources are
measured in hash rate for Proof of Work (PoW) blockchains
or stake for Proof of Stake (PoS) ones. We also assume that
users have the capability to access and read the blockchain at
their convenience, though they are not obligated to do so at
any particular time.

We assume every MPC protocol is secure in the real/ideal
paradigm. In particular, we assume the threhsold cryptosystem
and the key redistribution mechanisms are secure. Furthermore
we assume that the number of faulty or dishonest and colluding
authorization servers for a (¢,n) threshold cryptosystem is
less than ¢. Consequently, we assume no adversary is able
to corrupt t authorization servers before being detected and
sparking a key redistribution session (Section II-C)

In the aforementioned threat model, we aim to create a
protocol that is secure in the sense that it maintains the security
of all the sub-protocols involved (see Section VI-A).

C. kFrag redistribution

We assume that either DH or DR triggers a key redistri-
bution. Note that this triggering may be part of a notification
system in the application that asks DH or DR if they want to
act to mitigate a potential threat (such as a share corruption in
one of the operator nodes). We show a representation of the
dynamics of the extended system in Figure 1.

A kFrag redistribution is a procedure that transforms a
kFrag into a kFrag’. More formally:

o (id, 7K', opt) < kFragRedistr((id, rk, opt)): On input a

kFrag, the kFragRedistr algorithm outputs a new kF'rag
with the updated re-encryption key share.

In particular, kFragRedistr focuses on the update of the rk
component into a rk’ component. The complete kFragRedistr
algorithm for a (¢,n) threshold cryptosystem performed by
each party P;,7 = 1...n is presented in Algorithm 3.

To perform a key re-distribution, we use the Desmedt
routine DesRedistr introduced in Section II-C (lines 7-14
of Algorithm 3). Instead of passing the id to the LsssPrep
routine, as done in Algorithm 1, we pass the hashed id hid
instead: this change is done to maintain compatibility with the
original Umbral protocol and does not affect the security of

Algorithm 3 kFragRedistr for a (¢,n) threshold scheme
Require: kFrag; = (id;,rk;, U™ ...), D, sid
1: Get id; from each party P;
2: for j=1...n do
3 if j # i then
4 Compute hid; = H(D,id,)
5
6
7

end if
: end for
: {si,j}?:1 — LsssPrep({hidj}?zl,rki)
8: forj]:;éll...n do 77
9: if j # i then
10 P; sends share (id;, s; ;) to party P;
11: end if
12: end for
13: Wait for all shares {(id;,s;;)}}—; from parties P;

v

14: Tk’ + LsssRec({(idj,sm)}?:l;
i

15: Erase rk; and s; ; Vj !

16: Output kFrag; = (id;, vk}, U™i...)

the Desmedt key-redistribution protocol. On the other hand,
note that we pass the actual id as parameter in the LsssRec at
line 14.

D. cFrag redistribution

As mentioned in Section II-B, for each kF'rag there is a
cFrag. The latter is used by DR to recover the data after a
Re — Encryption has been performed by the node operators.

Algorithm 4 cFragRefresh for a (¢,n) threshold scheme

Require: cFrag;,rk;, vk}, sid
1. (E;,V;,id;, Xa) < cFrag;

2 Bl = B
s V7= R
4: Output cFrag; = (E,V/,id;, X a)

Algorithm 4 shows how a cFrag is updated. Note that
cFragRefresh must be performed after kFragRedistr, since
knowledge of the new rk’ is necessary to operate the update
of the cFrag. To see why the change works note that:

!
rk}

— i rk;
E|=E = (E")™

K3

= B (1)

so E! is constructed as if it came directly from the
ReEncryption function. Moreover, the change does not require
the nodes operators to know E (which would be unfeasible
because of the discrete logarithm problem). All these consid-
erations works similarly for V.

IV. A DLT BASED PDS

This section outlines our proposed scheme: a DLT-based
Personal Data Storage (PDS). The design of the PDS addresses
two key issues: the lack of transparency in managing personal

-

Key/Capsule Refresh

~

KEM + Refresh

The goal is to obtain the key K

DH's Public
Re-Encryption
keyFragment . DR's
K KF * i
Encapsulation
K Capsule Re-Encapsulation Decapsulate Frags /
Fig. 1. The image represents the Umbral work flow with our key redistribution extension (in red). Either DH or DR can trigger a key redistribution

procedure. The nodes in the threshold proxy re-encryption operate the kFrag and cF'rag redistribution.

information and the inability to access and make personal
data interoperable. Our PDS offers a user-centered model
for managing personal data, where storage is separated from
the application logic. Providers of personal data apps and
data intermediaries can leverage PDS to demonstrate their
compliance with regulations such as GDPR [19]. The resulting
PDS system is GDPR compliant, providing protection to users’
data, and promotes transparent personal data sharing.

Our system architecture relies on the use of DLTs and
a decentralized file storage (DFS). DLTs offer technological
guarantees for trusted data management and sharing, as they
provide a fully auditable decentralized access control policy
management and evaluation via smart contracts. This feature
enables the actors involved in data processing and control
to demonstrate their compliance transparently. The DFES is
combined with the DLT to overcome the scalability and
privacy issues associated with DLTs while preserving the
benefits of decentralization. A DFS is used for storing data
outside the DLT through “off-chain” storage, and tracing all
data references in the DLT through “on-chain”storage.

The proposed system has four operation: Data Storage, Data
Sharing, New AS Addition and AS removal. In the following
we describe the operations

A. Data Storage

We assume each actor has a unique pair of asymmetric keys
obtained via KeyGen (see Definition 1) In particular, DH has
key-pair (skpg,pkpm), DR has key-pair (skpgr, pkpr), and
SP; has key-pair (skgp,,pksp,).

The data holder D H encrypts its personal data pd, obtaining
epd € &, using a symmetric key K € K obtained through
the function Encapsulate(pkpyr). As part of the Encapsulate
function, K is placed in a capsule yx (See Section II-B). The
capsule is sent to the authorization servers AS.

The (personal) data epd is then stored in a DFS associated
with a DS and it is accessible via a P2P network with data
replication mechanisms, making it widely available. epd can
be referenced with its hash pointer hp.,q. The pointer is based
on the content hash digest, such as IPFS’s content identifiers,
or CIDs: this ensures data verifiability, since data may have

been altered since it was stored in the PDS and must be
audited.

B. Data Sharing

The whole process is explained in Figure 2

If a user U wants to access pd, it has to ask DH for
authorization. If DH grants it, then the user becomes a data
receiver DR. In practice that means U sends its public key
pky to DH as part of the request. By accepting the request,
DH performs ReKeyGen(skpm, pky,n,t) obtaining the new
key fragments kFrag. DH sends the kF'rag to the ASs: each
of them performs ReEncapsulate on the received kF'rag. The
state of U changes after being granted access, so it becomes a
data receiver DR (its key pair is denoted (skpg, pkpr) from
now on).

The pointer hpe,q is stored in a smart contract implementing
personal data access control. Note that different DLTs and/or
services can use the same data storage system, facilitating
the creation of a PDS for data portability. Therefore, the
primary use of the DLT is the execution of smart contracts
implementing personal data access control.

To obtain all the cF'rag, DR has to prove ownership of
pkpr. To do that, DR can sign the message hpepq Wwith
skpr. The signature can be either posted on a bulletin board
monitored by the ASs, or sent to each AS directly, depending
on the implementation.

Upon receiving the signature, each AS checks in the ACL
in the smart contract if DR can access hpepq. If so, each AS;
sends cFrag; to DR.

Finally, after collecting all the cF'rag;, DR can obtain the
symmetric key K and decrypt epd.

C. New AS Addition

Assuming KeRePRE grows in its user base, it is important
for the system to scale accordingly. On the one hand the
ACL management can not scale: the ACL is managed by
a smart contract, therefore scaling that part means dealing
with the topic of blockchain scaling , which we discussed
in a previous work [19]. On the other hand, it is possible to
add new authorization servers to the PDS management. Using

AS; as_—> SP —0— DFS

@) 4)

(kfragiv 'Yk)

™

(req, pkpr)

()
5) give data

ask data

DR — o

k = cfrag
Decrypt

data with/
’g

Fig. 2. Data Sharing steps between the data holder DR and the data receiver DR

terminology from Section III-A, this means that new ASs have
to be added to the access structure.

To see how it is possible, assume the current access structure
for a PDS is (¢,n), i.e. t ASs among n are needed to perform
the ReEncapsulate algorithm for DR so that DR can obtain
K via the DecapsulateFrags algorithm on the {cFrag}:!,
(see Section III-A). Then, a new node SP, 1 can be added by
performing kFragRedistr to create a (¢,n+1) access structure.
Specifically, with reference to Algorithm 3, if is possible to
derive hid; for j =1,...,n+ 1 and LsssPrep can be called
for {hzd};'ill Furthermore, it is easy to see how the access
structure can be incremented not just by 1, but for arbitrary
v > 0 using the same method and in just one iteration create
a new access structure of (¢,n + v).

D. AS Removal

It easy to imagine that in the course of operations, at least
a subset of nodes becomes faulty or are compromised. While
ascertain when a AS has become malicious is outside the
scope of the paper, we focus on how to deal with such cases.

As in Section IV-C, assume a current access structure of
(t,n). We split the explanation into two parts: we first deal
with the case where there are still m honest nodes with ¢ <
m < n and then we deal with the case where m < ¢.

If there are m honest nodes, t < m < n, then it is possible
to perform kFragRedistr involving only those m honest nodes
and excluding the n — m malicious ones. Since the m nodes
are honest by hypothesis, then we can trust them to perform
data deletion, and therefore exclude the n—m malicious nodes
forever, as we explain in Section VI-A. This procedure creates
a new access structure of (¢,m).

On the other hand, if m < ¢, then the system is highly com-
promised and it is impossible to have a secure redistribution
mechanism at this point, see proof of Theorem 1.

V. PERFORMANCE EVALUATION

In this section, we present the methodology and results
of the performance evaluation we carried out for the IOTA
Smart Contracts (ISC) authorization blockchain. Our scope is
to study the DLT side of our system proposal, as the imple-
mentation and performance evaluation of a PDS implemented
using IPFS was already provided in previous works [20].

We deployed all the smart contracts related to the autho-
rization service in a local ISC blockchain, using the IOTA
Wasp implementation [21]. Wasp is the node software that
implements Smart Contracts on the IOTA Tangle. This soft-
ware has support for EVM/Solidity smart contracts, as well as
Wasm smart contracts, providing limited compatibility with
existing smart contracts and tooling from other EVM based
chains like Ethereum. The rationale behind this choice is to
be able to implement smart contracts and transactions in a
private network for protecting personal data stored on-chain
by the Data Holders DH.

In this work, we are going to test our implementation of the
KeRePRE protocol that was built on top of the TPRE Umbral
libraries [22], openly available as source code [23]. This is
executed by the Authorization Servers and thus integrated with
the Wasp software. The client software and the smart contracts
implementation is open source too and can be found in [24],
[25].

A. Smart Contracts implementation

As seen in previous sections, the interesting aspect of smart
contracts is that an algorithm executed in a decentralized man-

ner enables two parties, i.e., DH and DR (see Section III-A
to see the notation), to reach an agreement in the transaction
of the data. This not only increases the disintermediation in
such a process, but also leaves traces to be later audited
and provides incentives to all the actors to correctly behave.
Figure 3 shows the UML Class Diagram of the smart contract
Solidity implementation we are going to discuss in this sub-
section.

Each DH has previously deployed a DataHolderContract
in the ISC authorization blockchain. This holds an Access
Control List (ACL) that enables Authorization Servers AS an
immutable way of looking up which entities (ISC accounts in
the form of addresses) are granted to access some data.

A Data Recipient DR can produce a data access consent
request in a string form. In particular, the method reques-
tAccess() is invoked in the DataHolderContract, with the
associated hash pointer of the encrupted data in the PDS
hpepa and request as input (Figure 3 shows id_ as parameter
representing the hp.pq and an array of addresses users for
representing the ISC accounts that will be granted access). A
NewRequest event will reach each DH. Each DH decides to
consent to the access to data based on the data access consent
request received through the event. If so, the DH invokes the
grantAccessRequest() method. The DR can now access all
content keys for the decryption of all the DH’ data through
the AS.

B. Tests Setup

During the test, we utilized the ISC consensus mechanism,
which operates as follows [26]:

o Each ISC chain is operated by a committee of validators,
each possessing a key that is split among all members.

o Each key share is useless on its own, but a collective
signature grants validators complete control over the
chain.

o The committee of validators is responsible for executing
the smart contracts in the chain and calculating a state
update.

e Once the next state is computed and validated, it is
committed to each validator’s database. Subsequently, a
new block containing the state mutations is added to the
chain, and the state hash is saved in the L1 IOTA Tangle.

Four validators nodes were deployed to the same machine to
create the L2 ISC blockchain network and other two L1 Tangle
network nodes were deployed to emulate the base ledger.
Each ISC validator node executes the consensus mechanism
with parameter values set up following the recommendations
in [21]. Moreover, these nodes also execute the KeRePRE
service. One validator node is used to expose the APIs for
external clients to interact with the blockchain. Several client
nodes are simulated to interact with these APIs.

In the following, we evaluate this set of operations that
implement the KeRePRE protocol.

1) Request Access - this operation is executed by DR
and consists of only one method invocation, i.e. the

requestAccess() method in the DataHolderContract; we
recall that this method requests access to the Data
Holder’s data.

2) Grant Access - this operation is executed by DH by
invoking the grantAccessRequest(); this act will store
DR public key pkpgr in the smart contract ACL in the
form of ISC address.

3) Create KFrags - this operation includes three subse-
quent steps; firstly, DH generates n kFrag using DR’s
pkpr (see Definition 1) and sends a kFrag to each of
the n ASs (i.e., ISC authorization blockchain nodes);
finally, DH requests to the n nodes the creation of a
cFrag using the kFrag they received (the capsule for the
piece of data interested was sent in a pre-processing step,
and is not accounted for the measuring).

4) Get CFrags - this operation is executed by DR to get
access to the content key; DR first sign a challenge-
response message using the secret key skpp associated
to the pkpg; then DR sends a get cFrag request to
k different AS using the signed message; each node
validates the signature and check if pkppr is in the
associated ACL in the DataHolderContract; if so, each
node returns a cFrag to DR.

5) Key Redistribution - this operation might happen in a
different moment and it is used to transform a kFrag
into a new kFrag to allow for the addition or removal
of an AS, see Section II-C.

C. Results

We note that n corresponds to the count of ISC valida-
tors/Authorization Servers and was configured to be 4. A
round of operations is defined as the successful execution
of the aforementioned procedures in sequence. The variables
under scrutiny include the threshold (t), ranging from 1 to
4, and the number of DH (k), varying from 10 to 50 with
increments of 10 each time. The measured dependent metrics
in our tests encompass the latency (time taken for a response to
an operation) and the system throughput, denoting the number
of rounds of operations executed per second.

All possible combinations of independent variables were
subjected to testing three times, with subsequent averaging of
the results. In each trial, we initiated the round of operations
ten times for every DH, employing an average interval of
1500 ms (derived from a Poisson Process with a mean of
1500 ms). Consequently, if the cumulative execution time of
the operations exceeded 1500 ms, it was likely that another
set of operations was launched in parallel. This procedure was
repeated for each DH.

a) Round of operations: Figure 4 and 5 depict the
average response latency and standard deviation for each oper-
ation within a round. A notable observation is the significant
disparity in latency between the Request Access and Grant
Access operations compared to the Create KFrags, Get CFrags,
and Key Redistribution operations. This discrepancy arises
from the involvement of the former two operations in writing
to the ISC authorization blockchain’s ledger, illustrating the

<<Abstract>>
Ownable

Private:

_owner: address

Public:

<<modifier>> onlyOwner()

L

DataHolderContract

Public:

_data: mapping(bytes=>ACL)
_requests: mapping(uint256=>Request)
_numRequests: uint256

Internal:
grantAccess(id: bytes, users_: address[])
Public:

grantAccessRequest(requestld_: uint256)
grantAccess(id_: bytes, users_: address[])
revokeAccess(id_: bytes, users_: address[])

<<event>> AccessGranted(amount: uint256)
<<event>> NewRequest(requestld: uint256, datald: bytes, users: address[], request: bytes)
requestAccess(id_: bytes, users_: address[], request_: bytes): (requestld: uint256)

checkPermissions(user_: address, id_: bytes): bool

[

<<struct>>
ACL

<<struct>>
Request

created: bool
allowed: mapping(address=>bool)

datald: bytes
users: address[]
request: bytes

Fig. 3. UML Class Diagram of DataHolderContract. Some classes, attributes and methods have been removed to make the diagram clearer.

discernible impact of the blockchain on the overall system
response latency.

Overall, the ¢ value demonstrates minimal influence on
the results. Conversely, as anticipated, the critical factor is
the k value representing the number of DH. A gradual but
consistent escalation in round response latency is evident
between 30 and 50 Holders, starting from 1.5 seconds latency
and peaking at 3.5 seconds for both Request Access and Grant
Access operations. Beyond 40 Holders, the latency experiences
a more rapid increase per D H. These trends seem linked to the
initiation of a new round approximately every 1.5 seconds for
each DH. Consequently, if a round surpasses the 1.5 seconds
threshold, particularly from £ = 40 onward, a surge in parallel
executions leads to an overall increase in response latency.

While operations dependent on blockchain writing take on
the order of thousands of milliseconds (i.e., seconds), the
Create KFrags, Get CFrags, and Key Redistribution operations
operate in the range of tens of milliseconds. For Create KFrags
and Get CFrags, a direct correlation is observable between
response latency and both ¢ and k values. Specifically, with

k = 10, latency values for the Create Kfrag operation hover
around 20 ms, while for the Get CFrag operation, they are
approximately 15 ms. These values do not exhibit a drastic
increase even with k£ = 50. Notably, the Key Redistribution
operation remains stable in terms of latency, seemingly unaf-
fected by the k value within the range of 10 to 50, maintaining
an average latency under 10 ms.

We stress that these results are not greatly affected by
network latency because all the nodes were executed in the
same machine.

b) System scalability: Figure 6 illustrates the outcomes
obtained by treating the round as a single operation, aggregat-
ing the results for each Request Access, Grant Access, Create
KFrags, Get CFrags, and Key Redistribution operation. The
lower section of the figure displays the average latency for
each round, while the upper section portrays the outcome of
distributing the round’s latency across individual data holders,
i.e., latency/k, serving as a measure of scalability.

The decrease or constancy of result values as k increases
indicates the system’s scalability. Notably, the bottom section

Request Access

4500 A

4000 A

3500 A

3000 A

2500 A

Avg latency (ms)

2000 1

1500 -

1000 -

100

STD (ms)
%)}
[}
i

10 20 30 40 50
Data Holders (k)

Grant Access

71 Thresholds
Il 1
2
N 3
Il 4

10 20 30 40 50

10 20 30 40 50
Data Holders (k)

Fig. 4. Average response latency when increasing the threshold ¢ value and the number of Holders k for operations involving writing to the ISC blockchain.

of the figure indicates a rise in average latency with an increase
in k, particularly noticeable from 40 to 50 DH. However,
when contextualizing this latency result in terms of system
throughput (upper part of the figure), it becomes evident that
the system exhibits commendable behavior with the increasing
k (at least up to 40 DH).

D. Discussion

Constrained to our conducted tests, it appears that an
optimal ratio of completed rounds to response latency time is
achieved with a number of DH around 30 and 40. Our obser-
vations underscore the substantial impact of writing in the ISC
authorization blockchain on the overall system performance.
Notably, the volume of requests pertaining exclusively to the
KeRePRE operations (Create KFrags, Get CFrags, and Key
Redistribution) demonstrates scalability to a larger number of
DH.

In practical scenarios, the interaction of Holders with the
system may exhibit a slower pace, resulting in an overall
increase in round latency while concurrently reducing the
system workload. For instance, envisioning the NewRequest
event triggered by the requestAccess() method being conveyed
to the Data Holder via a smartphone notification, the reading
and acceptance of which may take seconds, if not hours.

Nevertheless, we contend that the results affirm the viability
of our approach, particularly considering the flexibility to
adjust ISC authorization blockchain parameters and Wasp node
hardware configuration. Furthermore, the positive performance
of the KeRePRE implementation provides grounds to consider
relocating this module to another Virtual Machine that sup-
ports smart contracts but offers superior latency, potentially
leading to further improvements.

VI. ANALYSIS
A. Security

One of the innovations of the proposed PDS is the ability
to extend a TPRE to facilitate decentralized and encrypted
data management with a dynamic access structure. The se-
curity analysis is focused on this aspect. Specifically, the
security of adding members (Section IV-C) and deleting mem-
bers (Section IV-D) needs to be demonstrated. To achieve
this, a definition for security within the context of a share-
redistribution scheme is introduced. It should be noted that an
access structure (¢,n) requires at least ¢ out of n parties to
reconstruct a secret s.

Definition 2 (Secure Redistribution). Let Redist be a share
redistribution scheme form an access structure 3 = (t,n) to
a access structure ' = (k,m) for a secret s, with m > t. Let
P be the set of parties for ¥, P’ the set of parties in ¥ such

Create KFrags Get CFrags Key Redistribution
Thresholds
. 1
251 : 2 1
. s

= Il 4
E 20 - 4 4
>
[e)
c
z
o J B o
o 15 <=
<

10 E 1 § :

N
T T ‘ T T T T ‘ T T T ‘ ‘ T T
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

1.5 : 1
=
E 1.0 : 1
(=]
& 057 i |

0.0 - - -J—v—l.J—v—I.—"v—-l—.-v—-.—.-v—-L

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

Data Holders (k)

Fig. 5. Average response latency when increasing the threshold ¢ value and the number of Holders k& for operations NOT involving writing to the ISC

blockchain.

that [P N'P’| > t. Then Redist is secure if after its run parties
from the set P\ P’ are not able to reconstruct the secret s
anymore.

We are now ready to state:

Theorem 1 (Secure Redistribution for KeRePRE). In the
hypothesis of Definition 2, if 2t > n, then kFragRedistr
as presented in Algorithm 3 is a secure share redistribution
scheme from ¥ = (t,n) to ¥’ = (k,m) with m > t and
kE<m.

Proof. The proof strongly follows the work of Desmedt et al.
[11], since the routine kFragRedistr is inspired by it.

First of all, note that a change from an access structure
3 = (¢,n) to a access structure 3’ = (k,m) is feasible if and
only if there are still are at least ¢ honest parties, otherwise
it is impossible to reconstruct the secret s in the first place.
This is equivalent to ask for a honest majority since ¢ > [%].
Furthermore, note that if m < ¢ then it is not possible to
reconstruct the secret, since ¢ is the least amount of number
of parties in P needed to reconstruct s according to 3. If all
the constraints are satisfied, then kFragRedistr is equivalent to
the system of Theorem 1 in [11]. Consequently, it is possible to
apply Corollary 3 of [11] and conclude that it is sufficient that
all the honest parties in P erase rk; and s; ; Vj to guarantee
that parties in P \ P’ can not reconstruct secret s. Parties are
required to do this operation in Line 15 of Algorithm 3. [

We can now prove that the whole protocol is secure in
the real/ideal paradigm. To do that we start by introducing
a widely known theorem, called the Sequential Composition
Theorem [27]. The theorem semi-formally states:

Theorem 2 (Sequential Composition Theorem [27]). Suppose
that protocols p1 - - - pm, securely evaluate functions f1 -+ fm,
respectively, and that a protocol T securely evaluates a func-
tion g while using subroutine calls for ideal evaluation of
fi-+ fin- Then the protocol wP*Pm, derived from protocol
w by replacing every subroutine call for ideal evaluation of f;
with an invocation of protocol p; in the real world, securely
evaluates g.

Since we are in the ideal/real paradigm (see Section III-B) we
can Theorem 2 to prove security, noting that f; - - - f,,, are the
idealized versions of the threshold cryptosystem used (Section
II-A) and the key redistribution schemes (Section II-C), while
p1-- - pm are their respective real world versions. It is now
easy to prove:

Theorem 3 (KeRePRE Security). Suppose that every ideal
evaluation of f1--- fm of KeRePRE is secure in the ideal
world. Then the whole protocol KeRePRE is secure in the
real world.

Proof. We start by noting that if every ideal evaluation of
f1-- fmn of KeRePRE is secure in the ideal world then the
whole protocol KeRePRE is secure in the ideal world.

Let 7 = 7w/1""/m be the whole KeRePRE protocol in the
ideal world. Then #”**Pm is derived from protocol 7 by
replacing every subroutine call for ideal evaluation of f; with
an invocation of protocol p;. By Theorem 2, then, 7#1 " fm
securely evaluates KeRePRE in the real world, i.e. KeRePRE
is secure in the real world. O

We conclude this section by proving that KeRePRE is a
secure proactive protocol. Since we proved overall security
in Theorem 3, we need to only show that the threshold
cryptosystem achieves proactive security. In other words:

250

200 A

150

100 =

Latency / Data owners (ms [k)

=]
I

Thresholds

h o

Q Q2

=] =]

o o
| 1

Latency (ms)

10 20

30 40 50

Data Holders (k)

Fig. 6. System throughput considering a round as a single operation, i.e., aggregating the results for each single operation, while varying ¢ and k.

Definition 3 (Proactive security). Let m be a secure threhsold
cryptosystem. Then T achieve proactive security if 7 stays
secure after each key redistribution.

Theorem 4 (Proactive Security of KeRePRE). KeRePRE is
proactively secure.

Proof. We already proved that KeRePRE is secure in the
real world. One of the assumptions was that every subroutine
was secure, including the key redistribution mechanism. If
the key redistribution mechanism is secure, then for each
call to the key redistribution functionality, KeRePRE stays
secure. Therefore the conditions of Definition 3 are met, and
KeRePRE is proactively secure. O

B. Data Protection

As per Article 32 of the General Data Protection Regulation
(GDPR) [1], data controllers, or authorization servers (Section
III-A, must adopt appropriate security measures to guarantee
the confidentiality and integrity of personal data. Encryption

is one among the recommended security measures to protect
the data from unauthorized access, albeit not a perfect one.
In fact, the disclosure of an encryption key is a considerable
risk to the confidentiality and integrity of personal data. In
such a scenario, data controllers must promptly take actions
in compliance with the GDPR (as per Articles 33 and 34) [1].

In this paper, we assert that KeRePRE enhances the efficacy
of certain steps that the data controller must perform in such an
eventuality. The primary step is implementing corrective mea-
sure to prevent future breaches. This may include enhancing its
encryption protocols and improving access controls. KeRePRE
enables authorization servers to perform key deletion and
addition procedures easily, thus allowing them to comply with
the implementation of corrective measures.

VII. RELATED WORKS

A. Threshold Proxy Re-Encryption in DLTs

One of the first applications of TPRE into a DLT environ-
ment can be seen in the proposal by Chen et al. in [4]. The

authors apply a TPRE to the access permission mechanism
of a consortium DLT. On the other hand, Egorov et al. in
[28] propose a management service in a decentralized network
provide in encryption and cryptographic access control. Simi-
lar to our proposal, their TPRE reference software is Umbral
[5]. Differently from them, we add a key re-distribution
mechanism.

More recently, Chen et al. in [3] propose an architecture that
converges TPRE and DLT consensus algorithm for the creation
of a decentralized key management system tailored for the
Internet of Things. This system too lacks a key redistribution
mechanism. Bai et al. [29] propose a GDPR-compliant data
storage and sharing framework using blockchain for smart
healthcare systems where a PRE network is used to share
the encrypted data. Also in their case, there is no use of key
redistribution mechanisms. Furthermore, their PRE network
solution does not involve a threshold scheme and can lead to
single-point-of-failures.

B. DLT and personal data sharing

Several research works have proposed the use of DLTs for
data management in order to create innovative smart services
and promote social good applications [30], [31]. Typically,
these approaches involve storing data off-chain while utilizing
the DLT to provide data access transparency and granular
control at the user level. Access control mechanisms that
leverage DLTs and smart contracts have been proposed to
solve centralization and privacy issues (see for example the
proposal by Jemel er al. [32]) and to enable secure storage,
sharing, and transmission of data. Many researchers have
focused on designing data management systems that preserve
user control over their data and meet GDPR requirements. For
instance, Merlec et al. [9] present a GDPR-compliant system
where users have control over their personal data collection
and transaction history is recorded on the blockchain for data
provenance. Similarly, Hawig et al. [33] propose a distributed
architecture to exchange health data, while Koshina et al. [10]
leverages smart contracts for consent to enable healthcare data
exchange. In both cases, users can keep their medical data
in a personal data account hosted on any cloud-based data
management service and customize consent preferences using
smart contracts. Chang et al. present DeepLinQ [34], a multi-
blockchain architecture similar to our proposal. It facilitates
privacy-preserving data sharing in healthcare by providing
granular access control and smart contracts. Finally, Yan et
al. [35] introduce a Personal Data Store (PDS) that enables
users to collect, store, and share their data with third parties
using a Secret Sharing scheme. However, this approach is not
GDPR compliant since personal data is stored on-chain.

VIII. CONCLUSIONS AND FUTURE WORKS

This paper proposes a DLT-based personal data storage
system that utilizes a threshold proxy re-encryption scheme
combined with key redistribution

In particular, the use of smart contracts let users define and
enforce access policies for personal data: smart contracts can

provide a transparent and auditable mechanism for managing
access control that is resistant to tampering and unauthorized
modifications, while the immutability of DLTs ensures that
access policies cannot be altered without the explicit consent
of all relevant parties.

While an implementation of the key re-distribution is avail-
able online?®, in the future we aim to complete the implemen-
tation of the whole system.

REFERENCES

[1] European Parliament. Regulation (eu) 2016/679, 2016.

[2] Mirko Zichichi, Stefano Ferretti, Gabriele D’Angelo, and Victor
Rodriguez-Doncel. Personal data access control through distributed
authorization. In 2020 IEEE 19th International Symposium on Network
Computing and Applications (NCA), pages 1-4. IEEE, 2020.

[3] Yingwen Chen, Bowen Hu, Hujie Yu, Zhimin Duan, and Junxin Huang.
A threshold proxy re-encryption scheme for secure iot data sharing based
on blockchain. Electronics, 10(19):2359, 2021.

[4] Xi Chen, Yun Liu, Yong Li, and Changlu Lin. Threshold proxy re-
encryption and its application in blockchain. In Cloud Computing and
Security: 4th International Conference, ICCCS 2018, Haikou, China,
June 8-10, 2018, Revised Selected Papers, Part IV 4, pages 16-25.
Springer, 2018.

[5] David Nuiiez. Umbral: A threshold proxy re-encryption scheme.
Technical report, NuCypher Inc., 2018.

[6] Verichains. [VSA-2022-120] Multichain: Key Extraction
Vulnerability in fastMPC’s Secure Multi-Party Client (smpc).
https://drive.google.com/file/d/1zZEgQcb4NDjFi8rvTb2cPD5b5Zxif 1 -
SN/view, 2022.

[7] Trail of Bits. Disclosing Shamir’s Secret Sharing vulnerabilities and
announcing ZKDocs. https://blog.trailofbits.com/2021/12/21/disclosing-
shamirs-secret-sharing-vulnerabilities-and-announcing-zkdocs/, 2021.

[8] Jean-Philippe Aumasson, Adrian Hamelink, and Omer Shlomovits. A
survey of ECDSA threshold signing. JACR Cryptol. ePrint Arch., page
1390, 2020.

[9] Mpyana Mwamba Merlec, Youn Kyu Lee, Seng-Phil Hong, and Hoh Pe-
ter In. A smart contract-based dynamic consent management system for
personal data usage under gdpr. Sensors, 21(23):7994, 2021.

[10] Mirko Koscina, David Manset, Claudia Negri, and Octavio Perez.
Enabling trust in healthcare data exchange with a federated blockchain-
based architecture. In IEEE/WIC/ACM International Conference on Web
Intelligence-Companion Volume, pages 231-237, 2019.

Yvo Desmedt and Sushil Jajodia. Redistributiong secret shares to new
access structures and its applications. Technical Report ISSE TR-97-01,
George Mason University, 1997.

Kresimir Popovic and Zeljko Hocenski. Cloud computing security issues
and challenges. The 33rd International Convention MIPRO, pages 344—
349, 2010.

Kui Ren, Cong Wang, and Qian Wang. Security challenges for the public
cloud. IEEE Internet Computing, 16(1):69-73, 2012.

Smitha Sundareswaran, Anna Squicciarini, and Dan Lin. Ensuring dis-
tributed accountability for data sharing in the cloud. IEEE Transactions
on Dependable and Secure Computing, 9(4):556-568, 2012.

Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols
and atomic proxy cryptography. In Kaisa Nyberg, editor, Advances in
Cryptology - EUROCRYPT 98, International Conference on the Theory
and Application of Cryptographic Techniques, Espoo, Finland, May 31
- June 4, 1998, Proceeding, volume 1403 of Lecture Notes in Computer
Science, pages 127-144. Springer, 1998.

Ventzislav Nikov and Svetla Nikova. On proactive secret sharing
schemes. In Helena Handschuh and M. Anwar Hasan, editors, Selected
Areas in Cryptography, 11th International Workshop, SAC 2004, Water-
loo, Canada, August 9-10, 2004, Revised Selected Papers, volume 3357
of Lecture Notes in Computer Science, pages 308-325. Springer, 2004.

(11]

[12]

[13]

[14]

[15]

[16]

3The implementation can be found at

https://github.com/disnocen/umbral-rs

[17]

[18]

[19]

[20]

[21]
[22]
[23]
[24]
[25]

[26]
[27]

[28]

[29]

(30]

(33]

[34]

[35]

Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung.
Proactive secret sharing or: How to cope with perpetual leakage. In
Don Coppersmith, editor, Advances in Cryptology - CRYPTO 95, 15th
Annual International Cryptology Conference, Santa Barbara, California,
USA, August 27-31, 1995, Proceedings, volume 963 of Lecture Notes
in Computer Science, pages 339-352. Springer, 1995.

Sebastian Miiller, Andreas Penzkofer, Nikita Polyanskii, Jonas Theis,
William Sanders, and Hans Moog. Tangle 2.0 leaderless nakamoto
consensus on the heaviest dag. IEEE Access, 10:105807-105842, 2022.
Mirko Zichichi, Stefano Ferretti, Gabriele D’Angelo, and Victor
Rodriguez-Doncel. Data governance through a multi-dlt architecture
in view of the gdpr. Cluster Computing, 25(6):4515 — 4542, 2022.
Mirko Zichichi, Stefano Ferretti, Gabriele D’Angelo, and Victor
Rodriguez-Doncel. Data governance through a multi-dlt architecture
in view of the gdpr. Cluster Computing, pages 1-32, 2022.

IOTA Wasp v0.7.0-alpha.6. https://github.com/iotaledger/wasp, 2023.
David Nunez. Umbral: A threshold proxy re-encryption scheme, 2018.
Mirko Zichichi and Fadi Barbara. umbral-rs github repository. https:
//github.com/miker83z/umbral-rs, 2024.

Mirko Zichichi and Fadi Barbara. umbral-rs client libraries. https://
github.com/miker83z/desp3d-server-core, 2024.

Mirko Zichichi. Authorization smart contracts and tests. https://github.
com/miker83z/k-Da0, 2024.

Evaldas Drasutis. Iota smart contracts, 2022.

Ran Canetti. Security and composition of multiparty cryptographic
protocols. J. Cryptol., 13(1):143-202, 2000.

Michael Egorov, MacLane Wilkison, and David Nuiiez. Nucypher
kms: Decentralized key management system. arXiv preprint
arXiv:1707.06140, 2017.

Pinky Bai, Sushil Kumar, Kirshna Kumar, Omprakash Kaiwartya, Mufti
Mahmud, and Jaime Lloret. Gdpr compliant data storage and sharing
in smart healthcare system: a blockchain-based solution. Electronics,
11(20):3311, 2022.

Mugaddas Naz, Fahad A Al-zahrani, Rabiya Khalid, Nadeem Javaid,
Ali Mustafa Qamar, Muhammad Khalil Afzal, and Muhammad Shafiq.
A secure data sharing platform using blockchain and interplanetary file
system. Sustainability, 11(24):7054, 2019.

Victor Ortega, Faiza Bouchmal, and Jose F Monserrat. Trusted 5G
vehicular networks: Blockchains and content-centric networking. /IEEE
Vehicular Technology Magazine, 13(2), 2018.

Mayssa Jemel and Ahmed Serhrouchni. Decentralized access control
mechanism with temporal dimension based on blockchain. In 2077 IEEE
14th International Conference on e-Business Engineering (ICEBE),
pages 177-182. IEEE, 2017.

David Hawig, Chao Zhou, Sebastian Fuhrhop, Andre S Fialho, and
Navin Ramachandran. Designing a distributed ledger technology system
for interoperable and general data protection regulation—compliant health
data exchange: a use case in blood glucose data. Journal of medical
Internet research, 21(6):e13665, 2019.

Edward Y Chang, Shih-Wei Liao, Chun-Ting Liu, Wei-Chen Lin,
Pin-Wei Liao, Wei-Kang Fu, Chung-Huan Mei, and Emily J Chang.
Deepling: distributed multi-layer ledgers for privacy-preserving data
sharing. In 2018 IEEE International Conference on Artificial Intelligence
and Virtual Reality (AIVR), pages 173-178. IEEE, 2018.

Zhu Yan, Guhua Gan, and Khaled Riad. Bc-pds: protecting privacy
and self-sovereignty through blockchains for openpds. In 2017 IEEE
Symposium on Service-Oriented System Engineering (SOSE), pages
138-144. IEEE, 2017.

