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Abstract—Due to the transparency of blockchain, adversaries
can observe the details of a transaction, and then utilize the
amount as a unique quasi-identifier to make deanonymization.
Nowadays, to obscure the linkages between receivers and senders
within a transaction on the blockchain, mixing services are widely
applied in many real applications to enhance cryptocurrencies’
anonymity. The basic idea of mixing services is to hide an
output within several other outputs in a transaction such that
adversaries cannot distinguish them by their amounts since they
are purposely selected to have the same amount. For a set of
original outputs with different amounts, mixing services need to
decompose them into a set of decomposed outputs, where any
decomposed output has some other decomposed outputs with
the same amount. Since the transaction fee is related to the
number of outputs, we are motivated to decompose original
outputs into a minimal set of decomposed outputs, which is
challenging to guarantee the privacy-preserving effect at the
same time. In this paper, we formally define the anonymity-aware
output decomposition (AA-OD) problem, which aims to find a c-
decomposition with a minimum number of decomposed outputs
for a given original output set. A c-decomposition guarantees
that for any original output o, there are at most c of all
decomposed outputs with an amount of x coming from o. We
prove that the AA-OD problem is NP-hard. Thus, we propose an
approximation algorithm, namely Boggart1, to solve the AA-OD
problem with a ( 2

c
+ 3)-approximation bound on the number of

decomposed outputs. We verify the efficiency and effectiveness of
our approach through comprehensive experiments on both real
and synthetic data sets.

Index Terms—Blockchain, Mixing Service, Privacy

I. INTRODUCTION

As a promising method to protect users’ privacy on the

blockchain, mixing services draw much attention from both

academia [1]–[3] and industry [4], [5]. The basic idea of mix-

ing services is to mix several purposely selected transactions

from different users into one transaction, such that the linkages

of original transactions’ senders and receivers are obscured,

hence transaction flows are hard to trace.

As shown in Figure 1(a), account A wants to make a trans-

action tx1 to transfer $25 to account B by an output out1,1
and $8 to account C by an output out1,2. In blockchains,

an output transfers some tokens to an account. If the user

directly proposes the transaction tx1 to the blockchain, due to

the transparency of blockcahin, adversaries can observe tx1 to

1Boggart is a magical creature in J. K. Rowling’s Harry Potter series who
can shift his shape and no one knows what it looks like.

(a) Making transactions individually (b) Making transactions together
Fig. 1. An Example of Mixing Services.

reveal the transactional linkage between the account A and B.

The information of transactional linkages between accounts

can be further used to mine their private information (e.g.,

transaction history and social network) [6]–[8].

To prevent this kind of attack, researchers propose some

mixing methods to mix several similar transactions from

different users into one transaction [1]–[5]. For example,

assume the user of account D wants to make a transaction

tx2 transferring $25 and $8 to account E and F , respectively.

With a mixing method, tx1 and tx2 are first mixed in tx3

offline (as shown in Figure 1(b)), and only tx3 is proposed to

blockchain. Then, even if adversaries know that A transferred

$25 to B in tx3, they cannot differentiate between B and E. In

other words, mixing methods can obscure the intra-transaction
linkages, such that adversaries cannot determine the linkages

between inputs and outputs within a transaction. For the cross-
transaction linkages between transactions, researchers have

proposed some methods, such as ring signatures [9], [10].

Mixing methods and ring signature methods complement each

other to protect the anonymity of users in the blockchain. For

the details of mixing services, please refer to Subsection II-B.

Since in practice it is rare to simultaneously have several

transactions whose outputs’ amounts are the same, the existing

mixing methods decompose the original outputs into standard

denominations, like 0.001, 0.01, 0.1, 1, and 10 [11]. To distin-

guish, we term the outputs before decomposition as original
outputs and those after decomposition as decomposed outputs.

The receiver account of each decomposed output is different,

such that adversaries cannot know which decomposed outputs

transfer tokens to the same receiver. However, the existing

solutions have two critical shortcomings: (1) the privacy-

preserving effect is not theoretically guaranteed; and (2) the

transaction fee is high. Thus, how to find a decomposition
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(a) Solution 1 (b) Solution 2 (c) Solution 3
Fig. 2. The Motivation Example.

solution with a low fee satisfying users’ privacy requirements

is an important problem. Here is a motivation example.

Example 1. There are three original outputs from different
transactions, oo1 ∼ oo3, whose amounts are 20, 7, and 3,
respectively. We assume, due to their background knowledge,
adversaries know the original output sets.

The first decomposition solution is shown in Figure 2(a).
Specifically, oo1 is decomposed into two decomposed outputs,
do1 and do2, whose amounts are both 10. Besides, oo2 and
oo3 are decomposed into 7 and 3 decomposed outputs with
an amount of 1, respectively. Note that adversaries can only
observe the set of decomposed outputs on the blockchain,
and they cannot observe the linkages between an original
output and its decomposed outputs (as shown in blue lines).
However, since the amount of an original output is equal to the
summation of its decomposed outputs’ amounts, adversaries
can still infer some linkages. For example, as shown in red
solid lines, adversaries can easily find that do1 and do2 are
decomposed from oo1, because the amounts of oo2 and oo3
are both smaller than the amounts of do1 and do2. Thus, this
solution cannot protect users’ privacy.

The second solution, as shown in Figure 2(b), decomposes
each original output into decomposed outputs with an amount
of 1. As shown by the red dot lines, any decomposed out-
put may come from any original outputs. Thus, given any
decomposed output, adversaries cannot accurately determine
its original output. However, there are 30 decomposed outputs.
The transaction fee is related to the number of decomposed
outputs. For example, when the transaction fee is 10 satoshi
per byte, it costs extra 340 satoshi if the number of outputs
increases by one [12]. Therefore, by this solution, the privacy-
preserving effect is good, but the transaction fee is high.

A good solution, as shown in Figure 2(c), is to decompose
oo1 into two decomposed outputs with an amount of 7 (i.e.,
do1 and do2) and two decomposed outputs with an amount
of 3 (i.e., do3 and do4). The other two original outputs are
directly turned into two decomposed outputs whose amounts
are 7 and 3. With this solution, there are three decomposed
outputs with an amount of 7. Since the amount of oo1 is 20
and the amount of oo3 is less than 7, adversaries can know
that the decomposed outputs with an amount of 7 cannot all
be decomposed from oo1. In other words, they can conclude
that, two of the decomposed outputs with an amount of 7 are

from oo1, and one of them is from oo2. Furthermore, they can
conclude that, two of the decomposed outputs with an amount
of 3 are from oo1, and one of them is from oo3. However,
even they can infer this information, given any decomposed
output, adversaries still cannot determine its original output.
For example, given do5, adversaries only know one of oo1 and
oo2 is its original output, but cannot determine exactly which
one is its original output. Thus, by this solution, the linkages
between the original outputs and the decomposed outputs can
be obscured. In addition, there are only 6 decomposed outputs,
which is much smaller than the size of the second solution.

Thus, to overcome the shortcomings in existing mixing

solutions, we are motivated to find a decomposition solution

with a minimum number of decomposed outputs to satisfy

users’ anonymity requirements. Inspired by the idea of confi-

dence bounding [13], [14], we first define a novel anonymity

concept, c-decomposition, to measure the anonymity of a

decomposition solution. A c-decomposition requires that in

a transaction less than c of decomposed same-amount outputs

are from the same original output. For example, the solution

shown in Figure 2(c) is a 2
3 -decomposition, since 2

3 of the

decomposed outputs amount of seven and three are decom-

posed from oo1. However, the solution shown in Figure 2(a)

is a 1-decomposition since all the decomposed outputs amount

of ten are from oo1. We prove that with a c-decomposition,

an adversary’s posterior belief that a decomposed output is

decomposed from an original output can be bounded by c.
Thus, we can use c to measure the anonymity of a decompo-

sition solution. Then, we define the anonymity-aware output

decomposition (AA-OD) problem. Given a set of original

outputs, the AA-OD problem aims to find a decomposition

solution with a minimum number of decomposed outputs to

satisfy the anonymity constraint. We prove that the AA-OD

problem is NP-hard, therefore intractable. To solve the AA-

OD problem, we propose a (2c + 3)-approximate algorithm,

namely Boggart. Through the experiments over real data sets

in Section V, we illustrate that, the size of decomposition

outputs obtained by Boggart can be only 10−8 of the size of

results decomposed with denominations in the best scenarios.

In summary, we have made the following contributions:

• We define a novel anonymity concept, c-decomposition,

formulate the anonymity-ware output decomposition (AA-

OD) problem and prove its NP-hardness in Section III.

2603

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on March 16,2023 at 17:15:26 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. An example of the UTXO blockchain.

• We propose a ( 2c + 3)-approximate algorithm for AA-OD,

namely Boggart, in Section IV

• We conduct comprehensive experiments on real and syn-

thetic data sets to evaluate the efficiency as well as the

effectiveness of our proposed solution in Section V.

Besides, we introduce preliminaries in Section II, discuss

the related work in Section VI, and conclude our work in

Section VII. Due to the space limitation, we omit the proofs of

theorems in this paper, please refer to our technical report [15].

II. PRELIMINARIES

In this section, we review some background knowledge.

A. UTXO-model Blockchain
In the UTXO model, each UTXO is an output that is

generated in a previous transaction and has not been used.

Each UTXO contains a positive number of tokens. An account

may have multiple UTXOs. If a user wants to make a trans-

action, she/he needs to specify which UTXOs are used as the

transaction’s inputs. The sum of the inputs’ amounts is equal

to the sum of the outputs’ amounts in the transaction. In other

words, a transaction consumes some UTXOs from previous

transactions and creates some new UTXOs that can be used

in future transactions. Figure 3 shows an example, where ini,j

indicates the jth input in transaction txi, and outi,j indicates

the jth output in txi. In blocki, A generates a transaction

tx1. In tx1, A consumes the $33 tokens in an UTXO utxo1
and generates two outputs out1,1 and out1,2 transferring $25

and $8 tokens to B and C, which are two new UTXOs,

utxo2 and utxo3. In addition to utxo2, B has another UTXO

utxo4. Latter, in blockj , B generates a transaction tx2, which

consumes the $30 tokens in utxo2 and utxo4 and transfers

the tokens to account D. We formally define transactions as

follows:

Definition 1. A transaction, denoted by ti = (Ini, Outi),
consumes the tokens in inputs in Ini and transfers tokens

to accounts by the outputs in Outi. An input is denoted by

ini,j = (iui,j , ivi,j , iai,j), where iui,j is the UTXO spent in

ini,j , ivi,j is the amount of iui,j , iai,j is the account that owns

iui,j . An output is denoted by outi,j = (oui,j , ovi,j , oai,j),
where oui,j is the generated UTXO, ovi,j is the amount of

oui,j , and oai,j is the payee of oui,j . For each transaction ti,
the sum of tokens in Ini is equal to the sum of tokens in

Outi, i.e.,
∑

ini,j∈Ini
ivi,j =

∑
outi,j∈Outi

ovi,j .

In Figure 3, Out1 = {out1,1, out1,2}, ou1,1 = utxo2,

ov1,1 = 25, oa1,1 = B, In2 = {in2,1, in2,2}, iu2,1 = utxo2,

Fig. 4. Mixing Methods

iv2,1 = 25, and ia2,1 = B. The size of a transaction is related

to the number of inputs and outputs, not their amounts. The

size of each output is about 32 bytes. Since the transaction fee

is proportional to the transaction size, when the transaction fee

is 10 satoshi per byte, it costs extra 340 satoshi if the number

of outputs increases by one [12].

B. Mixing Methods

Due to the transparency of blockchain, adversaries can

observe the details of transactions and infer some transactional

linkages between accounts. The transactional linkages can be

classified as cross-transaction linkages and intra-transaction

linkages. The cross-transaction linkages reveal the correlations

between transactions. For example, when adversaries observe

tx1 and tx2 on the blockchain, since in2,1 is utxo2, which

is generated in tx1, they can know the sender of tx2 is

the receiver of tx1 (shown in red line in Figure 3). The

intra-transaction linkages reveal the correlations between the

senders and the receivers within a transaction. For example,

when adversaries observe tx2 on the blockchain, they can

know that the owner of account B knows the owner of D, and

the tokens of out2,1 are from in2,1 and in2,2 (shown in yellow

lines). Researchers have proposed some privacy protection

methods to obscure the cross-transaction linkages, such as

ring signatures [9], [10]. A ring signature hide the actually

spent UTXO of a transaction’s input within a set of other

UTXOs. For example, suppose the user uses a ring signature

rs = {utxo2, utxo6} to hide utxo2 in in2,1, where utxo6
is generated in tx3. Thus, after observing tx2, adversaries

cannot tell which one of tx1’s receiver and the tx3’s receiver

is the sender of tx2. However, these methods cannot obscure

the intra-linkages. Even if the user uses rs to hide utxo2
in in2,1, adversaries still can know the token of utxo5 is

transferred from in2,1 and in2,2. Mixing methods are proposed

as promising methods to obscure the intra-linkages between

senders and receivers within a transaction. For example, in

Figure 1(b), by mixing methods, adversaries cannot tell which

one of in3,1 and in3,2 transfers tokens to out3,1. Mixing

methods and ring signature methods complement each other

to protect the anonymity of users in the blockchain.

As shown in Figure 4, based on the operation mechanisms,

mixing services can be classified into two classes: centralized

mixing methods and decentralized mixing methods. For cen-
tralized mixing methods (e.g., Bitcoin Fog [16]), users first

transfer their tokens to the accounts of central mixing servers

(i.e., � in blue) and ask the servers to transfer some tokens to

some accounts under privacy requirements. Then, the servers

will group several users’ requests in a transaction and decom-

pose the original outputs into some decomposed outputs with

the same amounts satisfying the privacy requirements (i.e.,

2604

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on March 16,2023 at 17:15:26 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
POSSIBLE MATCHES OF FIGURE 2(C).

mhi MOi,j mhi MOi,j mhi MOi,j

mh1

MO1,1 = {do1, do2, do3, do4}
mh2

MO2,1 = {do1, do2, do3, do6}
mh3

MO3,1 = {do1, do2, do4, do6}
MO1,2 = {do5} MO2,2 = {do5} MO3,2 = {do5}
MO1,3 = {do6} MO2,3 = {do4} MO3,3 = {do3}

mh4

MO4,1 = {do1, do5, do3, do4}
mh5

MO5,1 = {do1, do5, do3, do6}
mh6

MO6,1 = {do1, do5, do4, do6}
MO4,2 = {do2} MO5,2 = {do2} MO6,2 = {do2}
MO4,3 = {do6} MO5,3 = {do4} MO6,3 = {do3}

mh7

MO7,1 = {do2, do5, do3, do4}
mh8

MO8,1 = {do2, do5, do3, do6}
mh9

MO9,1 = {do2, do5, do4, do6}
MO7,2 = {do1} MO8,2 = {do1} MO9,2 = {do1}
MO7,3 = {do6} MO8,3 = {do4} MO9,3 = {do3}

� in blue in Figure 4). Finally, they propose the transaction

to the blockchain (i.e., � in blue). Servers will charge some

mixing fees from users. For example, suppose the mixing

fee is $2, and a user wants to transfer $20 to another user.

Then, in Step �, the user needs to transfer $22 tokens to the

server. When servers propose transactions to the blockchain,

they should pay transaction fees, and the differences between

mixing fees and transaction fees are their profits. Thus, to

maximize their profits, they are motivated to minimize the

number of decomposed outputs to save transaction fees.

For decentralized mixing services (e.g., Wasabi [17]), users

first send messages stating their original transactions and

privacy requirements to coordinators (i.e., � in green). Then,

coordinators group several similar requests in a transaction

and decompose the original outputs into decomposed outputs

with the same amount satisfying the privacy requirements (i.e.,

� in green). Then, the mixing transaction is sent back to

participants involved in the transaction for agreement (i.e., �
in green). Then, the participants sign the transaction and send it

back to coordinators again (i.e., � in green). If all participants

sign the transaction, the mixing transaction is proposed to

the blockchain (i.e., � in green). If one participant does not

sign the transaction and the waiting timer is time out, all

participants go back to Step � in green and repeat the afore-

mentioned process. Since users need to pay transaction fees

when the mixing transaction is proposed to the blockchain,

they are also motivated to find a solution with a minimized

number of decomposed outputs to save transaction fees.

In this paper, we only consider how to decompose a set of

given original outputs. Thus, our solution can be used in Step

� of both centralized and decentralized methods. Formally,

we define the concept of a decomposed output as follows.

Definition 2. A decomposed output is denoted by doi =
(dsi, dvi, dri), where dsi is the original output where it is

decomposed from, dvi is its amount, and dri is its payee.

Besides, we use ooi to indicate an original output and use

ovi to indicate its amount. In Figure 2(c), ds1 = oo1, dv1 = 7,

and ov1 = 20. A decomposed output doi transfers dvi tokens

to a receiver account of dri. Once the mixing transaction is

recorded on the blockchain, adversaries can observe dvi and

dri of each decomposed output, but they cannot know dsi.
In the blockchain, a user can have multiple accounts, and

senders will assign decomposed outputs with different receiver

accounts. Suppose the receiver account of oo1 in Figure 2(c)

is A. Meanwhile, the owner of A has another four accounts,

B, C, D, and E. Then, the receiver addresses of ooi’s decom-

posed outputs are dr1 = B, dr2 = C, dr3 = D, dr4 = E.

Furthermore, to prevent adversaries from knowing all accounts

of the receiver, senders can randomly make new accounts for

receivers by the Diffie-Hellman key exchange method [18],

[19], and assign decomposed outputs with these new receiver

accounts. Thus, by the receiver accounts, adversaries cannot

find which decomposed outputs are from the same original

output or are sent to the same user [20].

C. The Attack Model

In this paper, we consider an adversary model where ad-

versaries have enough background such that they know the

original output set and the algorithm that is used to retrieve

the decomposition solution. However, they do not know the

receivers’ addresses of decomposed outputs from an original

output. In other words, they can know that the amounts of

decomposed outputs from an original output, but they cannot

know which particular decomposed outputs they are. For

example, in Figure 2(c), they can know oo1 is decomposed

into two decomposed outputs with amounts of 7 and two

decomposed outputs with amounts of 3. However, they cannot

tell which two of do1, do2, and do5 are decomposed from oo1.

Given a transaction and its original output set, to infer the

original output of a decomposed output, adversaries first infer

all possible matches. Then, they update their posterior belief,

which is a set of conditional probabilities that a decomposed

output is from an original output when the original output set

and the decomposed output set are as given. Finally, for the

decomposed output, adversaries select the original output with

the highest probability as its original output.

Definition 3. A match between OO and DO is denoted by

mhi(OO,DO) = {MOi,1, · · · ,MOi,|OO|}, where MOi,j is

the set of decomposed outputs that are considered from ooj ,⋃

ooj∈OO

MOi,j = DO, and ∀ooj ∈ OO,
∑

dok∈MOi,j

dvk = ovj .

For simplicity, when OO and DO are clear, we abbreviate

mhi(OO,DO) as mhi. Given a OO and a DO, there may

be a set M of possible matches. For Figure 2(c), OO =
{oo1, oo2, oo3} and DO = {do1, · · · , do6}. Table I illustrates

nine possible matches between OO and DO. Then, adversaries

calculate posterior belief by the retrieved matches set.

Definition 4 (Posterior belief). The posterior belief of adver-

saries is the set of condition probabilities that doj is decom-

posed from ooi when the original output set is OO and the
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decomposed output set is DO, i.e., P (ooi, doj |OO,DO) =
Ni,j(M)

|M | , where |M | is the number of possible matches, and

Ni,j(M) is the number of matches where doj is from ooi.

In other words, P (ooi, doj |OO,DO) is the ratio of the

number of matches where doj is from ooi to the number of all

possible matches between OO and DO. As shown in Table I,

N1,1(M) = 6 and P (oo1, do1|OO,DO) =
N1,1(M)

|M | = 2
3 .

Besides, P (oo2, do1|OO,DO) = 1
3 < P (oo1, do1|OO,DO).

Thus, oo1 is the most likely original output of do1.

III. PROBLEM DEFINITION

In this section, we first propose a novel anonymity concept,

namely the c-decomposition, and prove its privacy-preserving

effect. Then, we formulate the anonymity-aware output de-

composition (AA-OD) problem and prove its NP-hardness.

A. c-Decomposition

Denote di(x) as the number of decomposed outputs amount

of x that are decomposed from ooi, i.e., di(x) = |{doj |doj ∈
DO, dvj = x, dsj = ooi}|. Thus, we can calculate the condi-

tional probability in Definition 4 by P (ooi, doj |OO,DO) =
di(dvj)∑

ooi∈OO di(dvj)
. Thus, to limit P (ooi, doj |OO,DO), we

should bound the percentage of the decomposed outputs from

the same original output, which fits the idea of confidence

bounding [13], [14]. Thus, motivated by the idea of confidence

bounding, we define a novel concept, namely c-decomposition.

Definition 5. A decomposed output set DO of an original out-

put set OO is a c-decomposition, if for any original output ooi
and any its decomposed output doj , among the decomposed

outputs amount of dvj , the percentage of the decomposed

outputs from ooi is not higher than c, i.e.,
di(dvj)∑n

k=1 dk(dvj)
≤ c.

In Figure 2(c), DO is a 2
3 -decomposition. c is a positive

decimal smaller than one. If a decomposition solution is not

a c-decomposition, some users’ privacy will be revealed. In

Figure 2(a), since all decomposed outputs with an amount of

10 are from oo1, it is not a c-decomposition, and adversaries

can know the linkages between oo1 and do1/do2. By Defini-

tion 4, a c-decomposition guarantees that the posterior belief

that adversities have is bounded by c. Moreover, we prove that

in a c-decomposition, the diversity of the original outputs of

the same-amount decomposed outputs is at least � 1c �.
Theorem III.1. In a c-decomposition, the same-amount de-
composed outputs come from at least � 1c � original outputs.

Thus, the smaller the c, the more decomposed outputs.

In other words, the smaller the c is, the better the privacy-

preserving effect is, but the higher the transaction fees are.

Discussion 1. The differential privacy concept [21], [22]

is rarely used in the blockchain platform. The reason is

that differential privacy-based methods will add noise to

raw data, while in blockchain, all data must be accurate. c-
decomposition is similar to the k-anonymity concept [23]. For

adversaries who do not participate in the mixing service, c-
decomposition can guarantee that the posterior belief of adver-

saries is bounded by c. For adversaries who know some origi-

nal outputs’ decomposed outputs, the privacy-preserving effect

of c-decomposition decreases. However, if adversaries do not

know the decomposed outputs of at least two original output

of the same-amount decomposed outputs, c-decomposition

can guarantee that adversaries cannot accurately determine

the original output of a decomposed output, which fits the

convention of the attack model in mixing services [24].

Compared with the k-anonymity concept, c-decomposition can

resist some attacks that k-anonymity cannot resist, like the

homogeneity attack [25]. The homogeneity attack leverages

the cases where most of the same-amount decomposed outputs

come from the same original output. For example, there are

five decomposed outputs whose amounts are all 5. Four of

them are from an original output x, and another one comes

from an original output y. Given such a decomposed output,

the adversaries will know that it comes from x with a high

probability p = 80%. Since k-anonymity does not consider

the percentage of same-source decomposed outputs, it cannot

resist the homogeneity attack. However, our c-decomposition

can, since in a c-decomposition, the probability that a decom-

posed output comes from an original output is bounded than

c. When c is small, the probability of adversaries guessing that

a decomposed output comes from an original output is small.

B. The AA-OD Problem

Thus, to get a good privacy-preserving effect, users are

motivated to get a c-decomposition of the original outputs.

In this subsection, we formally define the anonymity-aware

output decomposition (AA-OD) problem as follows.

Definition 6 (The anonymity-aware output decomposition

problem). Given a set of original outputs OO and a privacy

requirement c, the anonymity-aware output decomposition

(AA-OD) problem aims to find a c-decomposition DO with a

minimal number of decomposed outputs.

In other words, the answer for the AA-OD problem satisfies

the users’ privacy requirements and minimizes the transaction

fee. For simplicity, in this paper, we assume the original output

set OO is sorted by the amount from high to low, i.e., ∀i ∈
[2, |OO|], ovi ≤ ovi−1.

Remark III.1. In blockchain systems, the amount of each

input/output is an integer multiple of the minimum basic unit.

In this paper, we turn each amount into an integer by dividing

it by the minimum basic unit. For example, in Bitcoin, the

minimum basic unit is 0.00000001 BTC = 1 Satoshi. For

an original output amount of 0.1 BTC, we turn its amount

into 107 Satoshi. We will show in Theorem IV.3 that this

transformation does not affect our algorithm’s time complexity.

Remark III.2. The value of c is customized and negotiated

by users who propose the original outputs in OO. It is

practical, and the communication is conducted on anonymous

communication networks, like Tor [26], which will not reveal

users’ privacy. As introduced in Section II-B, it is a common
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TABLE II
SYMBOLS AND DESCRIPTIONS.

Symbol Description
OO the set of original outputs
ooi an original output
ovi the amount of ooi
c the privacy requirement
DO a set of decomposed output
doi a decomposed output
dvi the amount of doi

solution to process the cases where users have different privacy

requirements in real-world applications. Specifically, a user

first proposes a value of c according to the application and

her/his budget. When a user has an adequate budget and

wants a higher privacy-preserving effect, s/he can set c a

small value. Then, a mixing service provider will group some

users together. If the values of c are the same, the mixing

service provider directly generates a c-decomposition for them;

otherwise, users communicate with each other to decide a

value of c. Finally, they will choose an identical value of c
that they all accept. If a user does not accept the value of c,
s/he can quit the group, and the mixing service provider will

assign her/him to another group according to her/his privacy

requirement until she/he can agree on the value of c with

other users in the group or she/he quit the mixing service.

In this paper, instead of grouping users, we focus on how to

decompose original outputs to get a c-decomposition when the

users have been grouped and they agree on a value of c.

C. NP-hardness

However, the AA-OD problem is intractable. In this sub-

section, we theoretically prove that the AA-OD problem is

NP-hard by reducing from the subset sum problem [27].

Theorem III.2. The AA-OD problem is NP-hard.

Table II summarizes the commonly used symbols.

IV. THE BOGGART ALGORITHM

To solve the AA-OD problem, we need to decide the amount

of each decomposed output from each original output. If

we enumerate all possible decomposed output combinations,

the search space is O(
∏

ooi∈OO

∏ovi

j=1
ovi

j ), which explosively

increases when the number of original outputs and the amount

of each original output increases. Unfortunately, in practice,

the amount of an original output is very large. For example,

in the Wasabi data sets detected by [2], the average amount of

original outputs is 46856228 Satoshi, and the highest amount

is 71075834767 Satoshi. Thus, it is costly to enumerate all

possible amounts for decomposed outputs.

In this section, we propose an approximation algorithm,

Boggart, to set the amounts of decomposed outputs by the

difference between the amounts of original outputs. We first

introduce the basic ideas of Boggart. Then, we describe

the algorithm in detail and demonstrate a running example.

Finally, we theoretically analyze its performance.

A. Basic Ideas
Briefly, Boggart partitions the original output set OO into

groups and independently decomposes the original outputs in

Fig. 5. Example of decomposition as Theorem IV.1.

each group, where each group contains � 1c �+ 1 original out-

puts. For each group of original outputs, Boggart first checks

if it needs to add some compensatory outputs. Compensatory

outputs are the original outputs that servers or coordinators

provide to help the decomposition. Then, Boggart decomposes

original outputs round by round until all original outputs are

fully decomposed.

Specifically, Boggart is inspired by three theorems and one

observation. Firstly, by Theorem III.1, if we decompose a

decomposed output amount of x from each of � 1c � original out-

puts, the obtained decomposed output set is a c-decomposition.

Thus, to obtain a c-decomposition, we can decompose round

by round, and in the ith round we decompose a decomposed

output amount of xi from each of � 1c � original outputs. By this

way, we do not need to decide the amount of each decomposed

output from each original output. Instead, we only need to

decide the value of xi. Then, we make the second theorem,

which can help us to decide the value of xi in each round.

Theorem IV.1. Suppose OO = {oo1, · · · , oo� 1
c �+1} is a set of

original outputs sorted by the amount from the highest to the
slowest, i.e., ∀i ∈ [1, � 1c �], ovi ≥ ovi+1. Then, we repeatedly
obtain some decomposed outputs from these original outputs
as flows: (1) at the ith(i ∈ [1, � 1c �]) round, we decompose a
decomposed output amount of ovi1− ovii+1 from each original
output except ooi+1, where ovab is the value of oob at the
beginning of the ath round; and (2) after � 1c � rounds, for
each original output, we turn it to a decomposed output with
its updated amount. In this way, we can get a c-decomposition.

Figure 5 shows an example of decomposition as Theo-

rem IV.1. Since ov1−ov2 = 40, in the first round, each original

output except oo2 is decomposed with a decomposed output

amount of 40. Similarly, we get x2 = 43 and x3 = 49. By

Theorem IV.1, we can set the amounts of decomposed outputs

by the difference between the amounts of original outputs.

However, an issue needs to be solved. As shown in Figure 5,

after decomposition, finally, the amounts of outputs may be

negative. In other words, the total amount of decomposed

outputs we obtained from an original output may be larger than

its amount, which is not acceptable. Next, we will introduce

our observation, which can help to solve this issue.

Observation: When there are only a few original outputs,

centralized servers or decentralized coordinators cannot make

a mixing transaction satisfying users’ privacy requirements.
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Fig. 6. Solve the negative amount issue in Figure 5.

In this scenario, users have to wait a long time until some

original outputs are proposed and a mixing transaction can

be made [28]. If the waiting time is too long, users may

abandon the mixing, and servers/coordinators cannot gain

the mixing fees. Thus, if the original output set only needs

a few more original outputs to make a mixing transaction,

servers and coordinators will make up for the needed original

outputs. These outputs transfer tokens back to the accounts of

servers and coordinators. Thus, they only loss a few transaction

fees, but they can own much mixing fees from the mixing

transaction. Thus, they are motivated to do that. Besides,

they have the abilities to do that. Usually, they have some

spare tokens in their accounts. For example, researchers fond

that the address2 has been used to store Wasabi coordinators’

profits [2]. From September 8, 2019, to September 20, 2019,

there were more than 9.88 spared bitcoins in this account.

In other words, for the original outputs whose amount is

not large enough, service providers can supply some extra

tokens. To distinguish, we term the original outputs that servers

or coordinators make up as compensatory outputs. For the

negative amount issue shown in Figure 5, we can solve it by

adding some compensatory outputs. Thus, we get the third

theorem, which proposes a way to add compensatory outputs

and retrieve a c-decomposition.

Theorem IV.2. Suppose α is the minimum integer such
that

∑α
i=2(ov1 − ovi) > ovα+1. Then, for each original

output ooj(j ≥ α + 1), we assign it with a compensatory
output amount of ov1 − ovj . We denote the compensatory
output of ooj as coj and denote its amount as cvj . Then,
we repeatedly obtain some decomposed outputs from these
original outputs and compensatory outputs as follows: (1) at
the ith(i ∈ [1, α − 1]) round, we decompose a decomposed
output amount of εi+1 = ovi1−ovii+1 from each original output
except ooi+1. In particular, if at the beginning of the ith round,
the amount ovj of an original output is less than εi+1, we
first decompose ovj from each original output except ooi+1.
Then, we decompose εi+1 − ovj from each original output
except ooi+1 and ooj , and we decompose εi+1 − ovj from
ooj’s compensatory output coj; and (2) after α−1 rounds, for
each original output and compensatory output whose amount

2address: bc1qs604c7jv6amk4cxqlnvuxv26hv3e48cds4m0ew

Algorithm 1: The Boggart algorithm.

Input: a set of original outputs OO and a privacy

requirement c
Output: a c-decomposition DO

1 partition OO into z groups where each group contains

m = � 1c �+ 1 outputs;

2 foreach group Gi do
3 foreach ooi,j in Gi do
4 εi,j = ovi,1 − ovi,j ;

5 calculate αi;

6 for j = αi + 1 to m do
7 add a compensatory output coi,j whose value is

cvi,j = ov1,1 − ovi,j ;

8 for j = 2 to αi do do
9 δ = min{εi,j ,min{ovi,k|ovi,k > 0}};

10 while εi,j > 0 do
11 ovi,1 = ovi,1 − δ, εi,j = εi,j − δ;

12 foreach k ∈ [2, j) ∪ (j,m] do
13 if ovi,k <= 0 then
14 cvi,k = cvi,k − δ;

15 else
16 ovi,k = ovi,k − δ;

17 update DO, δ and εi,j ;

18 foreach ooi,j and coi,j do
19 if its value is not zero then
20 turn it to a decomposed output, update DO;

21 return DO;

is positive, we turn it to a decomposed output with its updated
amount. In this way, we can get a c-decomposition and at any
time, the amount of each decomposed output is not negative.

Figure 6 illustrates how to solve the negative amount issue

in Figure 5 by adding compensatory outputs as the way in

Theorem IV.2. Since
∑2

i=2 εi > ov3, α = 2. Thus, we add two

compensatory outputs, co3 and co4, for oo3 and oo4, whose

amount is 43 and 49, respectively. In the first round, since

ov4 < ε1 = 40, we first decompose 1 from oo1, oo3, and

oo4. Then, we continue to decompose 39 from oo1, oo3, and

cv4. However, since the updated amount of ov3 is 6 < 39, we

decompose 6 from oo1, oo3, and cv4. After that, we decompose

33 from oo1, co3, and co4. Finally, ov1 = ov2 = cv3 = cv4,

and we turn them to decomposed outputs amount of 10.

B. The Boggart Algorithm
Inspired by the basic ideas, we design Boggart, whose

pseudocode is shown in Algorithm 1. It partitions the original

output set Out into groups (line 1). Since n = |OO| may

not be a multiple of m, the last group Gz may not contain

m original outputs. We consider the missing original outputs

in Gz are those amount of zero. Thus, each group contains

� 1c � + 1 original outputs. Next, the algorithm independently
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TABLE III
A RUNNING EXAMPLE OF BOGGART 2(C).

G1 G2

oo1 oo2 oo3 cv1,3 oo4 oo5 oo6 cv2,3
50 10 7 43 1 0 0 1
43 10 0 43 0 0 0 0
10 10 0 10
0 0 0 0

decomposes the original outputs in each group Gi. We denote

ooi,j as the jth-biggest output in Gi and denote ovi,j as its

amount. For each ooi,j in Gi, the algorithm first calculates the

difference between ovi,j and ovi,1 (line 3-4). Then, we calcu-

late the minimum integer αi such that
∑αi

j=2 εi,j > ovi,αi+1

(line 5). For each ooi,j where j > αi, we add a compensatory

output coi,j (line 6-7). Next, we decompose these original

outputs and compensatory outputs as the way in Theorem IV.2.

Since the amount of any ooi,k cannot be negative, we set the

value of a decomposed output as δ. If the current amount

of an original output is zero, we get a decomposed output

amount of δ from its compensatory output; otherwise, we get

a decomposed output amount of δ from itself (line 13-16).

Then, for each original/compensatory output whose amount

is positive, we turn it to a decomposed output (line 18-20).

Finally, we return the set of decomposed outputs (line 21).

Table III shows how to run Boggart to obtain a 1
2 -

decomposition of the instance in Figure 5. We partition

OO into two groups where each contains m = 3 outputs.

Specifically, the first group G1 is {oo1, oo2, oo3} and the

second group G2 is {oo4, oo5, oo6}, where oo5 and oo6 are

two virtual outputs whose value is 0. Thus, α1 = α2 = 2, and

we add co1,3 and co2,3, where cv1,3 = 43 and cv2,3 = 1. Each

row represents the remaining value of each output, where the

values that are updated in the round is in bold.

C. Theoretical Analysis
In this subsection, we theoretically analyze the performance

of Boggart. We first prove that Boggart can return the result

within polynomial time.

Theorem IV.3. The time complexity of the Boggart algorithm
is O(nc + 1

c2 ), where n is the number of original outputs in
OO, and c is the privacy requirement.

When c is fixed, the time complexity of Boggart is linear

with the number of original outputs. When the privacy require-

ment is higher, or the number of original outputs is larger, it

is harder to retrieve a c-decomposition, and the running time

is higher, which fits our Theorem IV.3. Next, we prove the

approximation ratio of Boggart.

Theorem IV.4. The approximation ratio of the Boggart algo-
rithm is 2

c + 3, where c is the privacy requirement.

Thus, the number of decomposed outputs returned by Bog-

gart will never exceed the 2
c +3 times the minimal number of

decomposed outputs in the optimal solution. When the privacy

requirement is higher, it is harder to get a c-decomposition, and

the difference between the solution obtained by Boggart and

the optimal solution will be larger, which fits Theorem IV.4.

Besides, as we introduced in Section IV-A, only when the

tokens of extra compensatory outputs are few, servers and

coordinators will make up the compensatory outputs. Since

the sum of original outputs’ amounts differs widely, to fairly

estimate the tokens of compensatory outputs that a solution

needs, we define the concept of compensatory ratio.

Definition 7 (Compensatory ratio). Given an original output

set OO and a set of compensatory outputs CO that a solution

needs, the compensatory ratio cr of this solution is the ratio

of the sum of compensatory outputs’ amounts to the sum of

original outputs’ amounts, i.e., cr =
∑

coi∈CO cvi
∑

ooj∈OO ovj
.

For the example in Figure 6, the compensatory ratio is
43+49

50+8+7+1 = 46
33 . The smaller the compensatory ratio, the

easier the solution is to be implemented. For example, if the

compensatory ratio is 100, to mix a set of original outputs

whose total amount is 10 bitcoin, servers/coordinators need to

use 1000 bitcoin. Although these bitcoins will be transferred

back to servers/coordinators, it is still difficult to execute.

We prove that the compensatory ratio of the decomposition

solution obtained by Boggart is limited.

Theorem IV.5. For any AA-OD problem instance, the com-
pensatory ratio of the decomposition solution obtained by the
Boggart algorithm is bounded by 1

c .

Thus, the number of tokens in compensatory outputs that the

algorithm needs is bounded by the 1
c times the sum of original

outputs’ amounts. When the privacy requirement is stricter, it

is harder to retrieve a c-decomposition and more compensatory

outputs are needed, which fits our Theorem IV.5.

Discussion 2. In practice, some users do not need a high

privacy-preserving effect, particularly when they do not want

to pay extra fess [29]. For example, researchers have found that

many users only mix their identities with another identity [30],

whose privacy preserving effect is equal to the case where

c = 0.5. In other words, these users only need that the

attacker cannot 100% determine their transactions. In 80% of

the transactions in the Wasabi data sets detected by [2], some

decomposed outputs are mixed with only one decomposed

output with the same amount. For example, in the transaction 3,

there are only two decomposed outputs amount of 348645952

Satoshi. In our technical report [15], we define this special case

of the general AA-OD problem as the M-AA-OD problem,

where the privacy requirement c is at least 1
2 (i.e., the majority

of the decomposed outputs whose amounts are the same can be

from the same original output). For the M-AA-OD problem,

we propose a 2-approximation algorithm, namely Polyjuice4.

Compared with Boggart, the number of decomposed outputs

in the solution obtained by Polyjuice is 15% smaller.

V. EXPERIMENTAL STUDY

To test our proposed algorithm, we conduct comprehensive

experiments over both real and synthetic data sets. In this

section, we first introduce the baseline solutions that will be

3hash value: 038ef30e6b51a08b834b0ae2f8a5b39d24c2c5390ef6526b0c4b-
a7af49d92451

4The Polyjuice Potion is a potion in J. K. Rowling’s Harry Potter series
that allows a drinker to shift her/his shape.
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compared with our Boggart algorithm. Then, we introduce

the configuration of our experiments. Next, we illustrate the

experimental results on both real and synthetic data sets to

show the advance of our Boggart algorithm, compared with

two baseline solutions. Finally, we summarize our finds from

the experiments. All experiments were run on an Intel CPU

@1.3 GHz with 32GB RAM in Java.
A. Baseline Solutions

As proved in Theorem III.2, the AA-OD problem is NP-

hard. Thus, it is infeasible to get the optimal result as the

ground truth. As an alternative, we will compare our Boggart

algorithm with two baseline solutions, the Decimalism-Greedy
(DG) approach and the Decimalism-Random (DR) approach.

In practice, the original outputs might not be enough to

make a c−decomposition. For the example in Figure 5, we

can find that we cannot get a 1
3 -decomposition for them if

we do not add extra compensatory outputs. We theoretically

prove that when the maximum amount of an original output is

higher than c times the sum of all original outputs’ amounts,

there does not exist a c-decomposition.

Theorem V.1. It is a necessary and sufficient condition of
having a valid c-decomposition of OO that ov1 <= c ·∑

ooi∈OO ovi.

As we introduced in Subsection IV-A, when the original

outputs are not enough to make a mixing transaction, services

and coordinators will make up the compensatory outputs.

Thus, DG and DR approach first check if the original outputs

are enough to make a c-decomposition. If not, they will add

a set of compensatory outputs CO = {co1, · · · , coh}, where

h = 
 �
ov1
c �−∑

ooi∈OO ovi

ov1
� + 1, ∀j ∈ [1, h − 1], cvj = ov1,

and cvh =
� ov1

c �−∑
ooi∈OO ovi

ov1
− (h − 1) · ov1. Then, DG

gets a c-decomposition in a greedy manner, and DR gets a

c-decomposition in a random manner:
• DG is adapted from existing works (e.g., Dash), which

decompose original outputs and compensatory outputs into

standard denominations, like 1, 10, 100, and so on [11].

It obtains decomposed outputs with standard denominations

from the highest to the lowest. Specifically, for a denomina-

tion x, it first tries to obtain as many as decomposed outputs

amount of x from each original output and compensatory

output, denoted as DO′. In other words, in DO′, di(x) =

 ovi

x �. If DO′ is a valid 1
c -decomposition and the remaining

amounts of the original outputs and compensatory outputs

satisfy Theorem V.1, we decompose the original outputs and

compensatory outputs as DO′; otherwise, we abandon to

obtain decomposed outputs with this denomination. Then,

DG turns to obtain decomposed outputs with the next

denomination.

• DR works like DG except that (1) in each round except

the last round, it randomly set di(x) between zero and


 ovi

x �; and (2) in the last round, for each original output

and compensatory output, DR turns it into x decomposed

outputs amount of one, where x is its remaining amount.
For the example in Figure 5, DG first adds two compen-

satory outputs co1 and co2, where cv1 = 50 and cv2 = 32.

TABLE IV
EXPERIMENTAL SETTINGS.

Parameters Values
privacy requirement c 0.01, 0.2, 0.4, 0.6, 0.8
number of original outputs n 80, 160, 240, 320, 400

mean μ of original outputs’ 5 · 103, 5 · 105, 5 · 107,

amounts 5 · 109, 5 · 1011
variance σ of original outputs’ 0.02·μ, 0.2·μ, 2 · μ,
amounts 20 ·μ, 200 ·μ

Then, since the highest amount is less than one hundred, DG

first tries to decompose these outputs into decomposed outputs

amount of ten. Since only ov1, ov2, cv1, and cv2 are not less

then tan, we can get five, one, five, and three decomposed

outputs amount of ten from ov1, ov2, cv1, and cv2 respectively.

By Definition 5, these fourteen decomposed outputs violate

the requirement of 1
3 -decomposition. Thus, DG abandons the

denomination of ten and tries to decompose the outputs into

the denomination of one.

For the example in Figure 5, DR also first adds two com-

pensatory outputs co1 and co2. Then, since the amounts of ov1,

ov2, cv1, and cv2 are at least ten, DR first tries to decompose

these four outputs into decomposed outputs amount of ten.

Suppose DR randomly gets a decomposition solution DO′

which decomposes one decomposed output amount of ten

from each of these four outputs. If we decompose like DO′,
the updated amount of outputs are ov1 = 40, ov2 = 0,

ov3 = 7, ov4 = 1, cv1 = 40, and cv2 = 22. By Theorem V.1,

since ov1 > 1
3 · (

∑4
i=1 ovi +

∑2
i=1 cvi), we cannot get

a 1
3 -decomposition from the remaining outputs. Thus, DR

abandons to decompose like DO′ and tries to decompose the

outputs into the denomination of one.

Since the largest denomination is related to the largest

amount of an original output, the time complexities of the

baselines are not polynomial to the number of original outputs.

B. Experiment Configuration
We test Boggart over real and synthetic data sets.

Real data sets. We use Wasabi mixing transaction data sets

from [2] as the real data sets. The authors of [2] proposed an

approach to identify mixing transactions. They implemented

the approach on Bitcoin and crawled transaction data sets

where mixing services are provided by Wasabi [4]. The data

sets contain 13581 transactions. For each experiment, we

randomly select a transaction in the data sets as an AA-OD

problem instance. We take the input sets of the transaction as

the original outputs that need to be decomposed. In the data

sets, a transaction contains at most 100 decomposed outputs

with the same amount. For example, the transaction5 contains

100 decomposed outputs whose amounts are all 10011638

Satoshi. By Definition 5, in this transaction, the privacy

requirement c is at least 0.01. Thus, the privacy requirement c
in the real data sets is at least 0.01. Since c is a decimal less

than 1, we vary the privacy requirement c from 0.01 to 0.8.

Synthetic data sets. Furthermore, to test the performances

of Boggart in different distributions of original outputs’

5hash value:16141e9c4f4b1ffdef970d96cf5cd39e6acd6101219bc22ad1cc80-
3fb7da2586
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(a) Size of varying c (b) Time of varying c (c) Compensatory ratio of varying c
Fig. 7. Results of varying c (Real).

amounts and the number of original outputs, we generate

the synthetic data sets and conduct experiments on them.

For each synthetic problem instance, we generate n original

outputs. The amount of each original output is randomly set

with a Gaussian distribution. The mean value of the Gaussian

distribution is μ, and the variance is σ. In the Wasabi mixing

transaction data sets, the number of inputs in a transaction is

at most 385, and the average number of inputs in a transaction

is 74. Thus, we vary the number of original outputs from 80

to 400. In the real data sets, the average amount of inputs

is 46856228 Satoshi, and the highest amount of an input is

71075834767 Satoshi. Thus, we vary the mean value of the

Gaussian distribution from 5·103 to 5 · 1011 Satoshi. For the

distribution of inputs’ amount in a transaction in the real data

sets, the highest standard deviation is around 123 times the

mean amount of these inputs. Thus, we vary σ from 0.02 · μ
to 200·μ. Like setting in the real data sets, we vary the privacy

requirement c from 0.01 to 0.8.
Comparison metric. For each experiment, we sample

10000 problem instances. We report the average amount

of the algorithms’ running time, the sizes of obtained c-
decompositions, and compensatory ratios:
• The running time of an algorithm is the time that the

algorithm used to get an answer for the problem instance.

The less the running time, the more efficient the algorithm.

• A decomposition’s size is the number of decomposed out-

puts. The smaller the size, the more effective the algorithm.

• As defined in Definition 7, the compensatory ratio of an

algorithm is the ratio of the sum of compensatory outputs’

amounts to the sum of original outputs’ amounts represent-

ing how many tokens in compensatory outputs an algorithm

needs. The lower the compensatory ratio, the easier it is to

implement the c-decomposition returned by the algorithm.
Testing parameters. In our theoretical analyses, the perfor-

mances of algorithms (e.g., running time, the size of obtained

decomposition, the chaff ratio) are related to the privacy

requirement c, the number of original outputs n, and the

amount of original outputs. Thus, in our experiments, we

test the effects of the privacy requirement c, the number of

original outputs n, the mean amount of original outputs, and

the variance of original outputs’ amounts. Table IV illustrates

experiment settings on two data sets, where we mark the

default values of parameters in bold font. In each group of

experiments, we vary the value of one parameter while setting

other parameters’ values to their default values.

C. Effectiveness test on Real data sets.
To exam the effects of the privacy requirement c, we run

the experiments on the real data sets.

Effect of the privacy requirement c. As shown in Fig-

ure 7(a), when users’ privacy requirements are more relaxed

(i.e., c is bigger), the sizes of the c-decompositions ob-

tained by three approaches all decrease. The reason is that

when the privacy requirement is more relaxed, more candi-

date c-decompositions satisfy the privacy requirement, and

approaches can return c-decompositions with smaller sizes.

Compared with the c-decompositions obtained by the two

baseline algorithms, the sizes of c-decompositions obtained

by Boggart are much smaller. As shown in Figure 7(b),

with the increase of c, in the beginning, the running time of

three approaches all drops dramatically, and then it almost

keeps stable. When c is bigger, it is easier for the solu-

tions to find decomposition satisfying the c-decomposition

requirement. Thus, in the beginning, with the increase of c,
the running time of the three algorithms decrease. However,

when c is large enough, c-decomposition constraint is relaxed,

and other features dominate the running time of algorithms,

like the number of original outputs. Thus, when c is large

enough, with the increase of c, the running time of the

three algorithms almost keep stable. As shown in Figure 7(c),

with the increase of c, the compensatory ratios of the three

solutions all decrease. When c gets larger, by Theorem V.1, it

is more likely that there exists a c-decomposition of original

outputs. Thus, two baseline algorithms need fewer tokens in

compensatory outputs. For Boggart, when c gets larger, m is

smaller, and each group contains fewer outputs. Thus, the sum

of compensatory outputs’ amounts is smaller, which fits our

theoretical analysis in Theorem IV.5.

In the experiments on the real data sets, we find that the

sizes of the c-decompositions obtained by Boggart are much

smaller than those of the c-decompositions obtained by the

baselines. By Theorem III.1, when 1
c is close to the number of

outputs, the sources of the same-amount decomposed outputs

will cover almost all original outputs. DG decomposes original

outputs by decimal bits, and the decimal bits of some original

outputs in a round may be zero. Then, when the number of

original outputs is close to 1
c , the decomposed outputs will

violate the privacy requirement. Then DG will turn to obtain

the decomposed outputs amount of smaller denominations,

which increases the sizes of c-decompositions dramatically.

In other words, the distribution of amounts affects the sizes

of c-decomposition. Thus, we generate the synthetic data sets

and test the effect of the amounts’ distribution over it.

D. Effectiveness test on Synthetic data sets.
To show the effect of the number of original outputs and the

distribution of their amounts, we make the synthetic data sets
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and do experiments over them. We also examine the effects

of the privacy requirement, whose results (Figures 8(d), 8(h),

and 8(l)) are similar to those over the real data sets.

Effect of the number of original outputs n. As shown in

Figure 8(a), when the number of original outputs increases, the

sizes of the c-decompositions obtained by the three algorithms

all increase. The reason is that when n gets larger, more

original outputs need to be decomposed, which increases the

number of decomposed outputs. Since DR randomly makes

c-decompositions, the sizes of its obtained c-decompositions

are extremely high. Since in the experiments of varying n, the

number of original outputs is much bigger than 1
c , the sizes

of the c-decompositions obtained by DG are much better than

those obtained by DR. However, they are still much bigger

than those obtained by Boggart. In particular, the sizes of c-
decomposition in the experiments over the synthetic data sets

are smaller than those in experiments over the real data sets.

The distribution of amounts in each transaction of the real

data sets is quite different. In the experiments over the real

data sets, we randomly select a transaction as the problem

instance and run the algorithms to solve it. We conducted the

experiments 10000 times and reported the average value of

the results in Figure 7. As we explained in the last paragraph

of Section V-C, when the distribution of amounts is highly

unbalanced, the sizes of results obtained by approaches will

be very large. Thus, the reported results in Figure 7 are affected

by extreme cases. However, the parameters of the distribution

in the synthetic data sets are set by the statistics value of the

real data sets, which is more balanced than the distributions of

extreme cases in the real data sets. Thus, the sizes of results in

the experiments over the synthetic data sets are smaller than

the sizes of results in the experiments over the real data sets.

As shown in Figure 8(e), when n increases, the running

time of the three algorithms increases since more original

outputs need to be decomposed. The running time of Boggart

increases linearly with n, which fits our theoretical analysis in

Theorem IV.3. As shown in Figure 8(i), when n gets larger,

the compensatory ratio of Boggart decreases. When n gets

larger, Boggart may need more compensatory outputs. But

meanwhile, compared with the increase of compensatory out-

puts’ amounts, the sum of original outputs’ amounts increases

much more. Thus, the compensatory ratio decreases. In the

experiments of varying n, in most instances, there exists c-
decomposition of original outputs. Since the two baselines

just need compensatory outputs to satisfy Theorem V.1, the

compensatory outputs they used are almost zero.

Effect of the mean amount of original outputs μ. As

shown in Figure 8(b), when the mean amount of original

outputs increases, the sizes of the c-decompositions obtained

by the two baseline algorithms both increase. Since the two

baseline algorithms decompose original outputs into standard

denominations, when the mean amount of original outputs

becomes larger, they will get more decomposed outputs. How-

ever, with the increase of μ, the sizes of the c-decompositions

obtained by Boggart almost keep stale. The reason is that

Boggart makes c-decompositions by the differences between

original outputs. Thus, the change of μ has no effect on

Boggart. As shown in Figure 8(f), when μ increases, the

running time of the two baseline algorithms increases. Thus,

when μ increases, the number of candidate denominations

increases, which makes the running time larger. However, with

the increase of μ, the running time of Boggart almost keeps

stable, which fits our theoretical analysis in Theorem IV.3.

As shown in Figure 8(j), when μ becomes larger, the com-

pensatory ratios of Boggart almost keep stable. The reason

is that Boggart adds compensatory tokens by the differences

between amounts. Thus, the change of μ has no effect on the

compensatory ratio of Boggart.

Effect of the variance of original outputs’ amounts σ. As

shown in Figures 8(c) and 8(g), when σ increases, the sizes of

the c-decompositions obtained by the baselines and the run-

ning time of the baselines all increase. The reason is that when

σ is larger, the differences between original outputs’ amounts

are larger, it is more difficult to make c-decompositions.

However, since Boggart can handle the differences between

original outputs’ amounts by adding compensatory outputs,

when σ increases, the sizes of the c-decompositions obtained

by Boggart and the running time of Boggart almost keeps

stable. As shown in Figure 8(k), when σ increases, the

compensatory ratio of Boggart increases. The reason is when

σ increases, the differences between original outputs’ amounts

get larger, and Boggart needs more compensatory outputs.

E. Experiment Summary
Finally, in this subsection, we summarize our findings.

Although when c is small, the approximation ratio of Boggart

is large, it still performs well in real data sets. As shown in

Figure 7, when c is 0.01, the size of c-decomposition obtained

by Boggart is only 10−8 of the size of results obtained by

the baseline algorithms. When c is too small, the transaction

size will be very large and the transaction fee is very high.

Thus, owe to the budget of users’ transaction fees and the

limited size of each block, in practice, c is not very small. In

the Wasabi mixing transaction data sets detected by [2] from

Bitcoin network, an output is mixed with another at most 99

decomposed outputs with the same amounts, which is equal to

c = 0.01. Thus, Boggart can perform well in real applications.

Besides, the running time of Boggart is small, which is only

several microseconds. In addition, the performance of Boggart

is not affected by the amounts of original outputs, which

changes dramatically in practice. Thus, Boggart is robust for

real-world applications. Moreover, the compensatory ratio of

Boggart is less than the naive solution, which adds 1
c times

of original outputs to make c-decompositions. In addition, the

amounts of compensatory outputs are acceptable. In [2], the

authors calculate that in August 2019, the profit of Wasabi is

at least 16 BTC, which is enough to support the compensatory

outputs that Boggart needs.

VI. RELATED WORK

Currently, with the population of cryptocurrencies, mixing

services attract much attention. Researchers have conducted
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(a) Size of varying n (b) Size of varying μ (c) Size of varying σ
μ

(d) Size of varying c

(e) Time of varying n (f) Time of varying μ (g) Time of varying σ
μ

(h) Time of varying c

(i) Compensatory ratio of varying n (j) Compensatory ratio of varying μ (k) Compensatory ratio of varying σ
μ

(l) Compensatory ratio of varying c

Fig. 8. Results of varying n, μ, σ
μ

, and c (Synthetic).

many works on developing mixing services. Researchers pro-

pose many centralized mixing services [3], [31] and decen-

tralized mixing protocols [32]–[35]. However, these works

focus on the security issues, and their decomposition solutions

are naive. There are two common decomposition approaches

in these works. The first approach is to ask users to set the

values of decomposed outputs themselves, like Wasabi [36].

As we proved in Theorem III.2, the AA-OD problem is NP-

hard. Users usually cannot set the values of decomposed

outputs intelligently. The second approach (e.g., Dash [37])

is to decompose original outputs into standard denominations

as the baseline solution DG Algorithm does in Section V. As

we illustrated in Section V, this solution will generate massive

decomposed outputs when making a c-decomposition, which

increases users’ transaction fees. Moreover, since the running

time is related to the number of candidate denominations, the

time complexity of the solution is related to the values of

original outputs. Thus, this solution is a pseudo-polynomial-

time algorithm. Thus, our work is necessary. As we evaluated

in Section V, our solutions are much better than the baselines.

There is another recent work studying the decomposition

approach [38]. It decomposes original outputs’ amounts by

the difference between the inputs’ amounts. This approach can

increase the difficulty of inferring the possible original cases

of transaction. However, by this approach, the amount of a

decomposed output may be unique, and when adversaries have

some background knowledge, the linkages between receivers

and senders will be revealed. Besides, their approach does not

minimize the number of decomposed outputs to save users’

transaction fees. Thus, our work is novel and valuable.

VII. CONCLUSION

In this paper, we target proposing an efficient anonymity-

aware output decomposing solution for mixing services on

blockchains. Specifically, we propose a novel anonymity

concept, namely c-decomposition. We prove the privacy-

preserving effect of a c-decomposition. Besides, we define

the anonymity-aware output decomposition (AA-OD) problem

and prove its NP-hardness. To solve the AA-OD problem, we

propose an algorithm, namely Boggart, whose approximation

ratio is 2
c + 3. By the Boggart algorithm, we can efficiently

mix transactions with arbitrary values on blockchains with a

guaranteed privacy-preserving effect.
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