
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/347266094

DMix: decentralized mixer for unlinkability

Conference Paper · September 2020

DOI: 10.1109/BRAINS49436.2020.9223282

CITATIONS

0
READS

118

2 authors:

Some of the authors of this publication are also working on these related projects:

ConTraffic View project

FirstLife View project

Fadi Barbara

Università degli Studi di Torino

3 PUBLICATIONS 5 CITATIONS

SEE PROFILE

Claudio Schifanella

Università degli Studi di Torino

73 PUBLICATIONS 867 CITATIONS

SEE PROFILE

All content following this page was uploaded by Fadi Barbara on 18 May 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/347266094_DMix_decentralized_mixer_for_unlinkability?enrichId=rgreq-10bf6b9d945f4947883a8310a567f791-XXX&enrichSource=Y292ZXJQYWdlOzM0NzI2NjA5NDtBUzoxMDI0ODUzNTgyODI3NTIwQDE2MjEzNTU1NDMwNDE%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/347266094_DMix_decentralized_mixer_for_unlinkability?enrichId=rgreq-10bf6b9d945f4947883a8310a567f791-XXX&enrichSource=Y292ZXJQYWdlOzM0NzI2NjA5NDtBUzoxMDI0ODUzNTgyODI3NTIwQDE2MjEzNTU1NDMwNDE%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/ConTraffic?enrichId=rgreq-10bf6b9d945f4947883a8310a567f791-XXX&enrichSource=Y292ZXJQYWdlOzM0NzI2NjA5NDtBUzoxMDI0ODUzNTgyODI3NTIwQDE2MjEzNTU1NDMwNDE%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/FirstLife?enrichId=rgreq-10bf6b9d945f4947883a8310a567f791-XXX&enrichSource=Y292ZXJQYWdlOzM0NzI2NjA5NDtBUzoxMDI0ODUzNTgyODI3NTIwQDE2MjEzNTU1NDMwNDE%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-10bf6b9d945f4947883a8310a567f791-XXX&enrichSource=Y292ZXJQYWdlOzM0NzI2NjA5NDtBUzoxMDI0ODUzNTgyODI3NTIwQDE2MjEzNTU1NDMwNDE%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fadi-Barbara?enrichId=rgreq-10bf6b9d945f4947883a8310a567f791-XXX&enrichSource=Y292ZXJQYWdlOzM0NzI2NjA5NDtBUzoxMDI0ODUzNTgyODI3NTIwQDE2MjEzNTU1NDMwNDE%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fadi-Barbara?enrichId=rgreq-10bf6b9d945f4947883a8310a567f791-XXX&enrichSource=Y292ZXJQYWdlOzM0NzI2NjA5NDtBUzoxMDI0ODUzNTgyODI3NTIwQDE2MjEzNTU1NDMwNDE%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universita_degli_Studi_di_Torino?enrichId=rgreq-10bf6b9d945f4947883a8310a567f791-XXX&enrichSource=Y292ZXJQYWdlOzM0NzI2NjA5NDtBUzoxMDI0ODUzNTgyODI3NTIwQDE2MjEzNTU1NDMwNDE%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fadi-Barbara?enrichId=rgreq-10bf6b9d945f4947883a8310a567f791-XXX&enrichSource=Y292ZXJQYWdlOzM0NzI2NjA5NDtBUzoxMDI0ODUzNTgyODI3NTIwQDE2MjEzNTU1NDMwNDE%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Claudio-Schifanella?enrichId=rgreq-10bf6b9d945f4947883a8310a567f791-XXX&enrichSource=Y292ZXJQYWdlOzM0NzI2NjA5NDtBUzoxMDI0ODUzNTgyODI3NTIwQDE2MjEzNTU1NDMwNDE%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Claudio-Schifanella?enrichId=rgreq-10bf6b9d945f4947883a8310a567f791-XXX&enrichSource=Y292ZXJQYWdlOzM0NzI2NjA5NDtBUzoxMDI0ODUzNTgyODI3NTIwQDE2MjEzNTU1NDMwNDE%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universita_degli_Studi_di_Torino?enrichId=rgreq-10bf6b9d945f4947883a8310a567f791-XXX&enrichSource=Y292ZXJQYWdlOzM0NzI2NjA5NDtBUzoxMDI0ODUzNTgyODI3NTIwQDE2MjEzNTU1NDMwNDE%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Claudio-Schifanella?enrichId=rgreq-10bf6b9d945f4947883a8310a567f791-XXX&enrichSource=Y292ZXJQYWdlOzM0NzI2NjA5NDtBUzoxMDI0ODUzNTgyODI3NTIwQDE2MjEzNTU1NDMwNDE%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fadi-Barbara?enrichId=rgreq-10bf6b9d945f4947883a8310a567f791-XXX&enrichSource=Y292ZXJQYWdlOzM0NzI2NjA5NDtBUzoxMDI0ODUzNTgyODI3NTIwQDE2MjEzNTU1NDMwNDE%3D&el=1_x_10&_esc=publicationCoverPdf

DMix: decentralized mixer for unlinkability
Fadi Barbàra

Department of Computer Science
University of Turin

Torino, Italy
fadi.barbara@unito.it

Claudio Schifanella
Department of Computer Science

University of Turin
Torino, Italy

claudio.schifanella@unito.it

Abstract—We present a protocol that lets partici-
pants operate a decentralized mixer to exchange coins
in the Bitcoin blockchain. DMix does not need the
election of any leader and respects both the unlinka-
bility and the atomicity properties, so that there is no
possibility to correlate addresses or lose funds using
the protocol. We leverage the MuSig aggregate signa-
tures. This aggregation scheme is based on the Schnorr
signature scheme, a recent proposal for a ECDSA
alternative, the current Bitcoin signature scheme. We
also present an analysis of the method and mitigation
of attacks.

Index Terms—blockchain, Schnorr signatures,
MuSig, Bitcoin, decentralized mixing

I. Introduction
Anonymous and privacy preserving digital currency has

been a major topic in last years’ cryptography literature.
Recently, blockchain based currencies (often called cryp-
tocurrencies) seem to enable these possibilities, but to date
cryptographers have not achieved this goal entirely.

A consequence of this fact is that people can be tracked
by analyzing the ledger. There are many heuristics which
let analysts discover the real user behind a set of addresses
[1], [2], [3], [4], [5], [6].

To solve these anonymity and privacy problems,
blockchain communities are developing methods to con-
trast those heuristics. For example, in the Bitcoin com-
munity, Maxwell et al. developed CoinJoin [7] and its
derivatives, while Heilman et al. [1] and Tram et al. [8]
introduced mixers. CoinJoin allows users to aggregate
inputs from different people to create a single transaction
to multiple outputs. On the other hand, mixers (also
called tumblers) let users anonymously exchange coins
through an intermediary; if many users perform an ex-
change through the same intermediary, coins are effectively
mixed, although the mixer operator can link old and new
addresses together. Figure 1a illustrates the operation
of a centralized mixing service. Both methods do not
require any change to the Bitcoin block structure, while
more complex proposals such as Mimblewimble [9] would
require further developments given the substantial changes
required in the Bitcoin protocol.

Analogous development is on-going in other permis-
sionless blockchains. For example in the Ethereum [10]
community the research is going toward more complex

cryptographic schemes such as [11], which uses Secure
Multiparty computation (MPC) and Trusted execution
environments (TEEs) to achieve similar results, or zero-
knowledge proof friendly mechanism as in recent develop-
ments in Ethereum 2.0 [12], [13]. These latter methods are
still experimental and as of now they are in contrast with
the “don’t trust, verify” mindset: TEEs currently require
a trusted third party[14] and being hardware based, it is
difficult to promptly solve vulnerabilities [15]. On the other
hand, current zero-knowledge non-interactive implementa-
tions like zk-SNARKS (used in ZCash) require a trusted
setup to initialize the parameters and to date it is not
proved that zero-knowledge proof based cryptocurrencies
are immune from chain analysis attacks. For more details,
see [16].

One of the new possibilities of recent proposed changes
in the Bitcoin signature algorithms, from ECDSA to
Schnorr signatures, is the creation of new protocols using
aggregate signatures [17]. One of the advantages of an ag-
gregate signature over multiple signatures (multisignature)
is related to the privacy of the users. In fact, using a single
signature regardless of the number of participants makes
it nearly impossible to know if a certain address belongs
to a single user or a multitude of users.

We propose to leverage aggregate signatures to create
DMix, a decentralized mixer. Participants can control
a jointly created (aggregated) address to send and then
redistribute coins among them. This aggregate address
acts as a mixer under full and exclusive control of the
participants.

DMix leverages the Schnorr signatures which are not
present in the Bitcoin protocol yet, but they are currently
developed in the Bitcoin community and will be deployed
soon. Schnorr signatures are needed to accomplish signa-
ture aggregation in a secure manner. Our protocol propose
the use of MuSig [18], a multisignature scheme based on
the Schnorr signature scheme. As far as we know, this is
the first application of the scheme.

Thanks to the properties of the blockchain, our method
does not require the election of any leader, and any party
can control the whole process during all its phases. No
party can cheat nonetheless: atomicity of the payment is
preserved thanks to the use of the CHECKLOCKTIME opcode.

The paper proceeds as follows. In Section II we present

the relevant literature on the topic. In Section III we
introduce the Schnorr and MuSig signature aggregation
protocols and how we obtain atomicity in the protocol.
In Section IV we present the method and in Section V we
analyze it. In Section VI we introduce possible applications
and we conclude the paper.

II. Related works

There are two current methods which address the trace-
ability issue on Bitcoin : mixers and CoinJoin .

A. CoinShuffle

In CoinShuffle [19], the authors propose a method to
mix coins in an anonymous and decentralized manner.

The authors assume that every participant holds the
same amount of coins at some Bitcoin address and that
this address will be one of the input addresses in the
mixing transaction. Furthermore every message from this
participant is signed with the private key associated with
the public key/address.

The protocol is split into three phases. In the first one,
participant create their new addresses, then they shuffle
and broadcast them to write the transaction and in the last
phase they verify the transactions. Particular care must be
taken for the second phase: the shuffling.

If parties A,B and C want to perform a CoinShuffle,
they have to decide an order of shuffling. Without loss of
generality we can assume the order is lexicographical, and
therefore it will be A,B and C. To perform the shuffle A
(which acts as a leader) will encrypt its new address with
C’s public key first and then with B’s one, using the non
commutativity of encryption. When B receives the double
encrypted message from A, he can decrypt it and see the
encrypted (with C’s public key) message. B will encrypt
his new address with C’s key, then B shuffles his message
and the A’s one and finally he sends both messages to C.
C can decrypt both messages and see the addresses.

He can not say which new address belongs to A or B.
He creates a transaction with those new addresses and
broadcast it to the blockchain. This method presents a
possible point of failure: if C does not broadcast the
transaction, the whole process will stop.

B. TumbleBit

TumbleBit is a centralized mixer [1]. The authors pro-
pose a method to interactively exchange bitcoins between
two parties in a way which promote unlinkability by
creating two channels; one between the first user A and
the Tumble T and the other between the other user B
and the Tumble.

In the Payment phase, A pays T which then pays
B. This can be scaled to hundreds of users, therefore
providing anonymity thanks to a big anonymity set and
the many possible choices of A and B.

The system provides unlinkability, balance 1 and secu-
rity against DDoS and Sybil attacks. On the other hand,
the system accomplish those goals being a trusted third
party which could abuse its position (e.g. he can delay
payments or refuse to establish channels with some user
which won’t be able to swap funds). Furthermore, to be
able to provide a multitude of users with the required
liquidity, the system must hold a great amount of bitcoins .
This is an incentive for the creation of centralized payment
hubs, similar to centralized exchanges.

C. CoinJoin
CoinJoin, originally proposed in [7], is a particular

transaction which aggregates inputs of different people
to jointly pay one or more parties. The goal is to build
transactions in a way that tries to invalidate naive taint
tracking. It does not need any change to the Bitcoin
protocol and it is relatively easy to perform, but it needs
interactive coordination between parties.

CoinJoins try to invalidate the heuristic that can be
defined as follows [4]: If two (or more) addresses are inputs
to the same transaction, they are controlled by the same
user.

On the one hand, CoinJoins invalidate the efficacy of
the heuristic [20], on the other hand users risk to come
into contact with dirty coins, such as bitcoins suspected
to come from a theft or illegal black market: the innocent
person could be considered to be the author of such theft
if the heuristic is applied and considered as valid. At this
point he must prove that he made a CoinJoin, losing his
privacy [21].

Another analysis by Maurer et al. [22] suggests that
normal CoinJoins do not provide unlinkability. To obtain
unlinkability it is necessary to consider other mechanism,
such as mixers.

III. Preliminaries
A. Schnorr Signatures

The Schnorr signature scheme was introduced by
Schnorr et al. [23] as a method of authentication in
smart cards. This scheme is under consideration to replace
the currently used ECDSA signature scheme in Bitcoin
protocol[17]. The signature scheme change is part of a
bigger soft-fork proposal which involves a total of three
Bitcoin Improvement Proposals (BIPs): BIP340, BIP341
and BIP342. The first one is the BIP related to Schnorr
Signatures.

Schnorr signatures present advantages with respect to
the ECDSA signature scheme in the Bitcoin context. First,
Schnorr signatures are provably secure with assumptions
that are weaker than those required by ECDSA signa-
ture scheme:[24], [25], [26]. Moreover, the inherent non-
malleability of Schnorr signatures solves the malleability
of ECDSA in a stronger way. For more details see [17]

1Balance means that there is no possibility of inflation or destruc-
tion of money even if parties colludes

Finally, its linearity permits signature aggregation, i.e.
the possibility of homomorphically sign a message us-
ing more than one key. In fact, given sig(m, sk1) and
sig(m, sk2) the Schnorr signatures of message m with
secret/private key sk1 and sk2 respectively, and given
sk1 + sk2 the aggregated key from sk1 and sk2, then

sig(m, sk1) + sig(m, sk2) = sig(m, sk1 + sk2)

We use this property to build DMix.
We report here the Elliptic Curve Schnorr signature

implementation variant used in Bitcoin. For details, see
[17], for the original description see [23]. In the rest of the
paper we will use the notation introduced in [18]

Key Generation A user generates sk
$←− Z which

acts as private key, and then computes the corresponding
public key pk = gsk, where g represents the generation
point of the elliptic curve and the operation gsk represent
the usual elliptic curve operation of a point g over itself
iterated sk times.

Signing Given a message m, a user wanting to sign a
message execute the following instructions:

1) k
$←− Z

2) r = gk

3) e = H(r||m) where H is a hash function and ||means
concatenation

4) s = k + sk · e
The signature is the couple (r, s). This variation is

preferred because it allows batch signature verification.
Verifying Given a message m, the public key pk and

the signature (r, s) a verifier computes ever = H(r||m).
The signature is valid if gs = r · pke

In fact: gs = gk+sk·e = gkgsk·e = gkgsk·ever = r · pke

B. MuSig
MuSig is a multisignature protocol [18] built upon the

Schnorr signature scheme [23].
This method protects from rogue attacks [27] with no

additional overhead and therefore it permits safe signature
aggregation. A rogue attack happens when a subset of
t malicious signers over a total of n, 1 ≤ t < n, can
compute the public keys pkn−t+1, . . . , pkn as functions of
the public keys of the honest users pk1, . . . , pkn−t. This
process allows them to produce forgeries for the whole
set of public keys {pk1, . . . , pkn−t, pkn−t+1, . . . , pkn}. For
example, a malicious user seeing the public key pk1, can
broadcast the public key pk2−pk1. This way the common
public key would be pk1 + (pk2 − pk1) = pk2. From now
on this malicious user can create (single) signatures alone
which will be considered and verified as multisignatures,
effectively signing on behalf of the honest party.

The signature scheme is secure in the plain public key
model. This model has been introduced by Bellare et al.
in [27] meaning that it requires only that each signer has
a (certified) public key. A consequence is that there is no
need of a PKI or key setup.

We briefly describe here the three algorithms of the
MuSig signature process, using the same notation of [18].

Given signers X1, . . . , Xn, let the group parameters be
(G, p, g) where p is a k-bit integer, G is a cyclic group of
order p, and g is a generator of G.

For the protocol, the authors use three different hashing
functions:

Hcom, Hagg, Hsig : {0, 1}∗ → {0, 1}l

where l is a security parameter.
Let L = {pk1, . . . , pkn} be a multiset2 of public keys.

When this multiset is given as input to a hash function,
the authors assume it to be uniquely encoded first, e.g.
using the lexicographical order.

Throughout the paper we maintain the multiplicative
notation of the authors.

Key Generation Each signer i generates a random
number, which acts as private key, ski

$←− Z and then
computes the corresponding public key pki = gski (same
as key generation in Schnorr signatures).

To create the aggregated key, each participant gathers
the public keys of the other participants and create the
multiset L. Each signer then is able to independently
create the aggregate public key by computing for each par-
ticipant i the hash ai = Hagg(L, pki) and then aggregating
this computation obtaining

PK =
n∏

i=1
pkai

i

Signing In the signing phase the participants create
the aggregate signature of a message m. Each participant
i randomly create ri

$←− Zp, and then computes Ri = gri

and its commitment ti = Hcom(Ri).
Each signer sends ti and after he collected all the other

commitments he sends Ri. Upon the receiving of all the
other Rj , he checks that tj = Hcom(Rj),∀j: if this is not
the case, he aborts the protocol.

Assuming everything is fine, the i-th signer computes:

R =
n∏

i=1
Ri, e = Hsig(pk,R,m), si = ri+eaiski (mod p)

and sends si to all other cosigners.
In the end, if the i-th signer receives
{s1, . . . , si−1, si+1, . . . , sn} from the other cosigners,
he can compute s =

∏n
i=1 si (mod p). The aggregate

signature is σ = (R, s).
Verification Given the multiset of public keys L, a

message m, and the signature σ = (R, s), the verifier
computes ai∀i ∈ {1, . . . , n}, PK and e as in the signing
phase, and accepts the signature if

gs = R

n∏
i=1

pki = R · pke

.
2Extension of the concept of set which admits the repetition of

elements.

C. Bitcoin transactions and Atomicity
Every Bitcoin transaction has an output script where

there are encoded the conditions for redeeming it. Most
transactions are executed with predefined forms of out-
put scripts, such as pay-to-public-key-hash (P2PKH) and
pay-to-script-hash (P2SH). These forms are called stan-
dard output scripts. Other forms of output scripts, non-
standard output scripts, are generally ignored by the
majority of nodes for security reasons3.

Thanks to BIP 13 [29], any output script can be con-
verted to P2SH. This allows users to use non-standard
output scripts by publishing it in the form of a P2SH
transaction. In particular, the output script we use in this
protocol uses an opcode described in BIP 65 which defines
the CHECKLOCKTIMEVERIFY opcode. This opcode allows a
transaction output to be made unspendable until some
point in the future. See [30] for details and examples.

In DMix, we use a particular form of escrow, described
in [30]. Assume that there are two participants in an
instance of DMix, Alice and Bob, that want to send
money to the aggregate address created with the procedure
described in the previous subsection. Let HpkA=pkA be the
hash of the public key of Alice and HpkAB=pkAB be the
hash of the aggregate public key. Then the script4:
IF <nBlock> CHECKLOCKTIMEVERIFY DROP <HpkA>

CHECKSIGVERIFY 1↪→

ELSE 1 ENDIF <HpkAB> 1 CHECKMUSIG
gives Alice and Bob a chance to spend the money signing
the transaction with their common private key before
block nBlock. If the two participants do not reach an
agreement before that block, then Alice can still spend
her money operating only with her private key. Therefore
Alice is protected in case Bob is malicious, and the
exchange is atomic. We call this output script Script1.

To publish a P2SH Bitcoin transaction based on
Script1, Alice create the hash of Script1, Hs1, and then
publish the following outputScript5:
HASH160 <Hs1> EQUAL
We call this transaction tx1. Redeeming transaction tx1

requires a transaction tx2 with four inputs: the output
script of the hash in transaction tx1 (Script1 in our
example), the relative inputScript (the inputScript which
would evaluate to true once concatenated with Script1 in
our example), the set of output addresses of tx2 and the
respective output amounts.

The inputScript for tx2 in the case of an
outputScript analogous to Script1 is of the form
(sig(H(tx2), skA), pkA) assuming Alice alone signs
tx2 and therefore redeems transaction tx1, or

3It is possible to execute DDoS attacks by placing output scripts
that are too complicated to verify [28].

4We used the non existent opcode CHECKMUSIG to simulate the
opcode of MuSig because there is not any accepted specific at the
time of this writing.

5See BIP16 at https://github.com/bitcoin/bips/blob/master/
bip-0016.mediawiki.

(sig(H(tx2), skAB), pkAB) in case both Alice and Bob
sign this transaction. Function sig(H(m), sk) produce a
signature of message m using the key sk.

D. Decentralized Mixers Properties
Similar to the CoinShuffle protocol proposal [19] we

require our method to respect some properties. We present
them below with an explanation.

• No Third Party: there must not be any external
party but the participants, so that the protocol can
be used with no need of external services;

• Compatibility: the protocol must not require any
change in the Bitcoin protocol (assuming the deploy-
ment of Schnorr signature);

• No Mixing Fee: there is no external cost in ex-
ecuting the protocol; the only fees payed by the
participants are required from sending transactions;

• Small Overhead: there is no overhead for partic-
ipants in using the protocol, but only the need of
authenticated channels;

• Efficiency: in case of honest participants, the proto-
col does not require any major time-based overhead
other that the time needed for the creation of blocks;

• Unlinkability: with a successful run of the DMix
protocol, a blockchain analyst can not ascertain com-
mon ownership of input address of the inDMix trans-
actions and output addresses of the outDMix transac-
tion;

• Verifiability: every participant should be able to
verify the transaction and no participant should be
able to steal coins;

• Atomicity: either all parties receive their coins back;
either in an unlinkable manner (i.e. the DMix protocol
is successful), or in a linkable manner (i.e. there was
a faulty communication or a malicious user).

IV. The DMix Protocol
DMix is a decentralized protocol that acts as a de-

centralized mixer for the Bitcoin protocol. It provides
atomicity and privacy leveraging the aggregated signature
of MuSig over the Schnorr signature scheme.

In our protocol, we assume N distinct parties met
either in person or online. The protocol requires a distinct
transaction from each participant toward an aggregated
address, DM , using the MuSig key generation algorithm
created by the participant themselves; we call this kind
of transactions inDMix transactions. Then, to redeem
the coins, the participants need to create an aggregate
signature of exactly one transaction that starts from DM
and goes to multiple new addresses belonging to the
participants; we call this transaction outDMix. Figure 1b
illustrate both kind of transactions. No intermediary is
needed to perform all of these steps.

Our protocol is divided into three steps which can be
referred to as:

1) Information and Public Keys exchange

2) inDmix Transactions
3) outDmix Transaction
In subsequent subsections we describe every phase in

detail. We put a running example at the end of each phase.
In the example Alice, Bob and Carol need to mix their
coins and decide to use DMix.

A. Information and Public Keys exchange

We assume the parties create a shared secure channel
to communicate between each other. This channel remains
open throughout the whole protocol and participants will
close it when the exchange is finished.

To setup a DMix exchange, participants need to agree
on five inputs in order:

1) the total fees they will pay in the outDMix transac-
tion

2) the timeout of the whole process
3) the amount of the outputs in the outDMix transac-

tion
4) the amountIni, i.e. the amount that each participant

Pi sends to DM in the inDMix transaction
5) the information required to jointly create DM .

Total Fees: In the third phase of the protocol, par-
ticipants send a transaction from the aggregated DMix
address DM , so they need to agree on the total fee
totalFee which they intend to give to the miners. If
participants agree on the total fees, they can indepen-
dently create the outDMix transaction. totalFee has to
be divided between the participants, e.g. equally among
them. Given participants P1, P2, . . . , PN which have to pay
fee1, fee2, . . . , feeN fees respectively, then

∑N
i=1 feei =

totalFee.
Timeout: In similar fashion, users decide the block

number (either relative or absolute) for the nLocktime
field of the inDMix transaction. This field is used by the
CHECKLOCKTIMEVERIFY opcode and it acts as a timer: after
that period, if the protocol aborted for some reason, users
can redeem their coins (Section III-C). Thanks to this, the
DMix protocol ensures the atomicity.

amountOut: Users have to establish a common gran-
ularity value for each output amounts of the outDMix
transaction. We call this parameter amountOut.

Having a common output amount is crucial to preserve
the unlinkability requirement in the decentralized mixer:
different transaction output amounts could lead to the
linking of input and output amounts and lose all the
privacy property of a privacy preserving method due to
the subset sum problem6. This problem is present in some
privacy preserving methods such as CoinJoin [22], and to
avoid this problem we require user to agree on a common
output and decide their input based on this parameter.

6See for example the Wikipedia article at https://en.wikipedia.
org/wiki/Subset\ sum

amountIni: Each participant has to declare the
amount he wants to send to DM . Differently from Coin-
Shuffle, users can put different amounts of coins in DMix.
Declaring the input amount lets every other participant
to independently build the outDMix transaction and pre-
vents the creation of a central point of failure. The only
constraint is that amountIni− feei must be an integer
multiple of amountOut for each participant.

A possible drawback of this method is the creation of
many outputs risking the creation of dust coins, i.e. coins
whose value is less than transaction fees and therefore they
are not spendable. In practice, this is not a real problem
because people agree on the fees before this step and decide
amountIn taking into account future fees.

DMix Address Creation: Participants in DMix create
the aggregate address from the aggregated public key
generated by the MuSig signature scheme. In particular,
each participant Pi sends in the channel his own public key
pki . After he collects the other public keys, he creates
the aggregate public key PK (see Section III-B). Each
participant derives the same public key pk and from that
key the participant can create the DMix address DM
independently7.

Example Alice, Bob and Carol create a shared secure
channel, see the leftmost column of Figure 1b decide the
fees they intend to pay to the miners for the outDMix
transaction, and the timeout. In this case they decide that
the fees will be a total of 0.015B to be payed equally among
them. After this step, they decide for the amountOut
which in this case is 0.25B.They see that the bitcoin
blockchain has created block number 1000 few minutes
ago, and they decide to put the timeout in about three
hours. They decide to put an absolute block number: the
timeout is decided to be block number 1018. Based on
these parameters, Alice decides her amountIn = 1.005B,
Bob’s amountIn = 0.505B and Carol’s amountIn = 0.255B.

Finally Alice, Bob and Carol share their public key with
the others and create the address DM following the key
generation algorithm of the MuSig protocol.

B. inDmix Transactions
After discussing the terms of the transaction in the

previous step, each participant sends a transaction from
his address to the aggregate address DM created in the
previous phase. Exactly one output of this transaction
must be equal to the amountIn previously declared.

These inDMix transactions have a construction anal-
ogous to transaction tx1, as explained in Section III-C.
For each participant Pi we call inDMixi the P2SH trans-
action he sends to DM . The relative script encoded in
the hash of the P2SH transaction sent by Pi will be
addressed as scripti. This phase ends when all participants
{P1, . . . , PN} have sent their inDMix transactions and all
of them have been included in the blockchain.

7The address DM is the base58 of the hash of the public key pk
[31]

(a)
(b)

Fig. 1: A graphical comparison between a centralized mixing service and DMix. (a) A centralized mixer. The path of
the mixing is known to the operators of the mixer. (b) DMix example. We marked Alice’s, Bob’s and Carol’s addresses
in gray because this information is known only to those who participated in the DMix protocol

Example If PK is the aggregated public key and DM
is the aggregated address derived from it, we write HPK=
H(PK) the hash of PK. We call A1 the input address of
Alice in the inDMixAlice transaction and A2 her change
address. With HpkA1= H(pkA1) the hash of Alice’s public
key pkA1 relative to the address A1.

Alice’s script for the P2SH transaction, denoted
scriptAlice, is:
IF <1018> CHECKLOCKTIMEVERIFY DROP DUP HASH160

HpkA1 EQUALVERIFY ELSE DUP HASH160 HPK
EQUALVERIFY ENDIF CHECKSIG

↪→

↪→

and its hash is denoted HsA. The inDMixAlice transaction
of Alice has the following parameters:

• input Address: A1 output Address: DM , A2
• input Amount: 1.66B

output Amount: 1.005B, 0.655B
• inputScript8:true, outputScript:

HASH160 <HsA> EQUAL
Bob and Carol send analogous transactions, see the

middle column of Figure 1b.

C. outDmix Transaction
The goal of all participants in this phase is to redeem

their coins. To accomplish this goal they need to spend
the coins previously transferred to the DM address. In
particular, the participants need to jointly create and
sign a single transaction which spends all the inputs
from the inDMix transactions, moving the coins to many
outputs belonging to the participants: this is the outDMix
transaction. The outDMix transaction is analogous to tx2

8We put a single true, because we assume the user can spend a
previously received output

of Section III-C: participants have to create one such
transaction and an aggregate signature of it to redeem
their coins.

Of the four inputs needed to create this kind of trans-
action, participants already know the output amounts:
these amounts are equal to amountOut, decided in the
first phase. Furthermore, each participants already knows
the aggregated public key: they only need to compute the
aggregate signature to complete the input script of the
outDMix transaction. For these reason these nine steps are
needed in this phase. Each participant Pi:

1) sends his newly created addresses
{Addri

1, . . . , Addr
i
mi
}, where mi = amountIni−feei

amountOut
2) sends scripti used in the inDMixi transaction
3) checks the hashes for each scripti received
4) sorts {Addri

1, . . . , Addr
i
mi
},∀i = 1 . . . n

5) assigns amountOut to each output amount and put
scripti in the right field

6) signs the outDMix transaction, obtaining sigi which
then shares with the other participants (Section
III-B)

7) checks the received signatures using the verification
algorithm of Section III-A

8) create the aggregate signature of the outDMix trans-
action (Section III-B)

9) sends the signed transaction
These steps give to each participant the ability to inde-

pendently create and sign the same outDMix transaction
that will be published to the blockchain. Miners will in-
clude only one of these and will treat the others as double-
spend attempt, therefore discarding them. The advantage
is that this way each participant is not trusting the others

anymore than he trusts himself. Therefore, thanks to the
properties of the blockchain, they can redeem their money
in a leader-less manner.

Once the transaction has been sent and parties received
their funds, the users close the channel.

Example Alice, Bob and Carol communicate their
newly created output addresses and their input scripts to
redeem their coins. For easiness of explanations, let’s say
Alice’s new addresses are {Addr1, Addr2, Addr3, Addr4},
Bob’s addresses {Addr5, Addr6} and Carol’s address is
{Addr7}. Assume these address are already in lexi-
cographical order. Alice sends scriptAlice, Bob sends
scriptBob and Carol sends scriptCarol; Alice checks
that H(scriptBob) =HsB from inDMixBob and that
H(scriptCarol) =HsC from inDMixCarol. Analogous things
do both Bob and Carol.

The input addresses of their outDMix transaction are
the output addresses of their respective inDMixi, so the
redeeming transaction will be:

• input: DM : 1.005B, DM : 0.505B, DM : 0.255B
• output: Addr1 : 0.25B, Addr2 : 0.25B, Addr3 : 0.25B,
Addr4 : 0.25B, Addr5 : 0.25B, Addr6 : 0.25B, Addr7 :
0.25B

Alice, Bob and Carol obtain the same transaction inde-
pendently and then they sign it, obtaining sigAlice, sigBob

and sigCarol. Finally they collect the other signatures and
independently aggregate them and publish their outDMix
transaction. In the rightmost column of Figure 1b we
represented this transaction.

V. Analysis
A. Properties satisfaction

We explain here how our protocol satisfies the properties
previously listed. Obviously participants do not require
any third party to cooperate (e.g. mail communication do
not intrinsically need any third party) and there are no
mixing fees; the only fees required are those belonging to
the miners. Moreover, the protocol has a small overhead
with respect to a normal transaction: it only requires one
transaction to the DMix address and a transaction from
it. For the same reason, the protocol is Efficient if the
participants are honest. Assuming Schnorr signatures are
deployed, the protocol is compatible with Bitcoin.

Atomicity derives from the the inDMix transaction built
as in Section III-C. Similarly, Verifiability derives from the
signature choices. In fact, every participant can check that
the others are following the protocol: the protocol makes
(honest) participants fill the required field of the outDMix
transaction in a unique way; therefore by applying the ver-
ification algorithm of the Schnorr scheme to the collected
signatures in the seventh step of the third phase (Section
IV-C), the participants can be sure that they are creating
a valid aggregate signature, i.e. a signature of the right
transaction.

The last property is Unlinkability: thanks to the equiv-
alence of all output amounts in the outDMix transaction

and the fact that the communication between parties is
private and/or encrypted, there is no possibility to link
input and output in the transaction. Furthermore, this
solve the issues of other privacy preserving methods such
as CoinJoins (see Section IV-A)

B. Managing attacks
The method lets people exchange funds in an atomic and

privacy preserving manner thanks to a private secure chan-
nel, aggregate signatures and the CHECKLOCKTIMEVERIFY
opcode without third parties or any leader election. While
we used techniques that prevent passive attacks, it is still
possible to perform an internal active attack. In fact, a
malicious participant could track all the addresses, linking
them to the owners during the third phase and then
broadcast the transcription of the communication.

To mitigate this attack, users can open private a channel
of communication with other users. In this private channel,
parties would privately exchange the addresses. In the
common chat room those participants would communicate
addresses not belonging to themselves, while being sure
that others will communicate their own. We explain here
the rationale from a probabilistic point of view.

Let I be the event {There is exactly one malicious user
in the group} and set the probability of that event to p,
i.e. P (I) = p. If there are N participants {P1, . . . , PN},
this means that I is the union of N different events:

I = {P1 is malicious} ∪ . . . ∪ {PN is malicious} (1)

Because these are disjoint events, we assumed there
is exactly one malicious actor, and given that we
have no other information about the participants, then
P ({Pi is malicious }) = p/N,∀i. This is the probability
for a member of the DMix group to create a private chan-
nel of communication with the malicious actor9. This has a
good impact on the overall privacy preserving properties.

In fact, assume that the probability P (I) = 90%
and that there are N = 10 participants. Therefore the
probability of exchanging the address with the malicious
actor (and therefore the probability to still be tracked
after the use of a private channel and DMix) is 9%. If a
participant deems this probability to be too high, he can
open multiple private channels with other users and relay
other people addresses. For the sake of an example, let’s
say that P1 opens three private channels. In this case then,
the probability of communicating his own address to the
malicious person is

p

N
· p

N − 1 ·
p

N − 2
which means, following the numeric example above, that
P1 has less than 0.15% of probability of communicating
his own address to the malicious person. Furthermore, to

9Actually, if this party is sure not to be malicious himself, the
probability is slightly higher and it is equal to k/(N − 1) for obvious
reasons.

be extra cautious, parties can relay addresses using the
encryption method used by CoinShuffle [19] which would
further increase the uncertainty.

VI. Applications and Conclusion

We proposed DMix, a method to mix coins in a decen-
tralized way that provides unlinkability under exclusive
control of the participants. Applications of a decentralized
mixer range from gaining privacy for payments (e.g. after
business negotiations) to proxy payments10. Furthermore,
DMix can help regaining the right to be forgotten [32] if
decentralized identities will use the blockchains as man-
agement support. In fact, DMix is practically able to cut
the ties between one transaction and the following one.

Our method resists the currently used heuristics in chain
analysis and provide users with better privacy thanks to
the common output amount of the outDMix transaction.
To accomplish this result, we used the MuSig signature
aggregation protocol.

References

[1] Ethan Heilman, Leen AlShenibr, Foteini Baldimtsi, Alessandra
Scafuro, and Sharon Goldberg. TumbleBit: An Untrusted
Bitcoin-Compatible Anonymous Payment Hub. In Proceedings
2017 Network and Distributed System Security Symposium, San
Diego, CA, 2017. Internet Society.

[2] George Kappos, Haaroon Yousaf, Mary Maller, and Sarah Meik-
lejohn. An Empirical Analysis of Anonymity in Zcash. page 16.

[3] Philip Koshy, Diana Koshy, and Patrick McDaniel. An Anal-
ysis of Anonymity in Bitcoin Using P2P Network Traffic. In
Nicolas Christin and Reihaneh Safavi-Naini, editors, Financial
Cryptography and Data Security, volume 8437, pages 469–485.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

[4] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill
Levchenko, Damon McCoy, Geoffrey M. Voelker, and Stefan
Savage. A fistful of bitcoins: Characterizing payments among
men with no names. In Proceedings of the 2013 Conference on
Internet Measurement Conference - IMC ’13, pages 127–140,
Barcelona, Spain, 2013. ACM Press.

[5] Mauro Conti, Sandeep Kumar E, Chhagan Lal, and Sushmita
Ruj. A Survey on Security and Privacy Issues of Bitcoin. IEEE
Communications Surveys & Tutorials, 20(4):3416–3452, 24.

[6] Rui Zhang, Rui Xue, and Ling Liu. Security and Privacy on
Blockchain. arXiv:1903.07602 [cs], August 2019.

[7] Gregory Maxwell. CoinJoin: Bitcoin privacy for the real world.
https://bitcointalk.org/?topic=279249, August 2013.

[8] Muoi Tran, Loi Luu, Min Suk Kang, Iddo Bentov, and Prateek
Saxena. Obscuro: A Bitcoin Mixer using Trusted Execution
Environments. page 30.

[9] Andrew Poelstra. Mimblewimble. down-
load.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf.

[10] Dr Gavin Wood. Ethereum: A secure decentralised generalised
transaction ledger. page 32.

[11] Guy Zyskind, Oz Nathan, and Alex ’Sandy’ Pentland. Decen-
tralizing Privacy: Using Blockchain to Protect Personal Data.
In 2015 IEEE Security and Privacy Workshops, pages 180–184,
San Jose, CA, USA, May 2015. IEEE.

[12] Antoine Rondelet and Michal Zajac. Zeth: On integrating
zerocash on ethereum. arXiv preprint arXiv:1904.00905, 2019.

[13] DZJ Williamson. The aztec protocol. URL:
https://github.com/AztecProtocol/AZTEC, 2018.

10A proxy payment is done by getting the money from a DMix
instead of the payer in order to mask his real address, e.g. for
anonymous donations.

[14] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari
Kostiainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. Soft-
ware Grand Exposure: SGX Cache Attacks Are Practical.
arXiv:1702.07521 [cs], February 2017.

[15] Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger
Kapitza. AsyncShock: Exploiting Synchronisation Bugs in
Intel SGX Enclaves. In Ioannis Askoxylakis, Sotiris Ioanni-
dis, Sokratis Katsikas, and Catherine Meadows, editors, Com-
puter Security – ESORICS 2016, volume 9878, pages 440–457.
Springer International Publishing, Cham, 2016.

[16] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars
Virza. Scalable Zero Knowledge via Cycles of Elliptic Curves
(extended version). page 47.

[17] Pieter Wuille, Jonas Nick, and Tim Ruffing. Schnorr
BIP. https://github.com/sipa/bips/blob/bip-schnorr/bip-
schnorr.mediawiki.

[18] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter
Wuille. Simple Schnorr multi-signatures with applications to
Bitcoin. Designs, Codes and Cryptography, 87(9):2139–2164,
September 2019.

[19] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. Coin-
Shuffle: Practical Decentralized Coin Mixing for Bitcoin. In
Miros law Kuty lowski and Jaideep Vaidya, editors, Computer
Security - ESORICS 2014, volume 8713, pages 345–364.
Springer International Publishing, Cham, 2014.

[20] Sarah Meiklejohn and Claudio Orlandi. Privacy-Enhancing
Overlays in Bitcoin. In Michael Brenner, Nicolas Christin, Ben-
jamin Johnson, and Kurt Rohloff, editors, Financial Cryptogra-
phy and Data Security, volume 8976, pages 127–141. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2015.

[21] Tin Tironsakkul, Manuel Maarek, Andrea Eross, and Mike Just.
Probing the Mystery of Cryptocurrency Theft: An Investigation
into Methods for Taint Analysis. arXiv:1906.05754 [cs], Decem-
ber 2019.

[22] Felix Konstantin Maurer, Till Neudecker, and Martin Florian.
Anonymous CoinJoin Transactions with Arbitrary Values. In
2017 IEEE Trustcom/BigDataSE/ICESS, pages 522–529, Syd-
ney, Australia, August 2017. IEEE.

[23] C.P. Schnorr. Efficient signature generation by smart cards.
Journal of Cryptology, 4(3), 1991.

[24] David Pointcheval and Jacques Stern. Security arguments for
digital signatures and blind signatures. Journal of cryptology,
13(3):361–396, 2000.

[25] Gregory Neven, Nigel P Smart, and Bogdan Warinschi. Hash
function requirements for schnorr signatures. Journal of Math-
ematical Cryptology, 3(1):69–87, 2009.

[26] Manuel Fersch. The provable security of elgamal-type signature
schemes. doctoralthesis, Ruhr-Universität Bochum, Univer-
sitätsbibliothek, 2018.

[27] Mihir Bellare and Gregory Neven. Multi-signatures in the plain
public-Key model and a general forking lemma. In Proceedings
of the 13th ACM Conference on Computer and Communications
Security - CCS ’06, pages 390–399, Alexandria, Virginia, USA,
2006. ACM Press.

[28] Stefano Bistarelli, Ivan Mercanti, and Francesco Santini. An
Analysis of Non-standard Transactions. Frontiers in Blockchain,
2:7, August 2019.

[29] Gavin Andresen. Address format for pay-to-script-
hash. https://github.com/bitcoin/bips/blob/master/bip-
0013.mediawiki, 2011.

[30] Peter Todd. OP CHECKLOCKTIMEVERIFY.
https://github.com/bitcoin/bips/blob/master/bip-
0065.mediawiki, 2014.

[31] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash
System. page 9.

[32] Christopher Allen. The path to self-sovereign identity. Life with
Alacrity, 2016.

View publication statsView publication stats

https://www.researchgate.net/publication/347266094

